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PT-Symmetry in 2x2 Matrix Polynomials
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Abstract

2x2 matrix polynomials of the form P (z) = Y=o o z) are
constructed for the cases n = 1,2, 3, where n is the degree
of the matrix polynomial, o, is the identity matrix, and
o, (G = 1,2,3) are the Pauli matrices. The nature of PT-
symmetry of the matrix polynomials is examined across
different points z = (x, y) in the complex plane. The PT-
symmetric properties of P_(z) can be characterized by two
functions, denoted by s(x,y) and h(x,y). If the trace of the
matrix polynomial is real, then the points at which it can
exhibit PT-symmetry are defined by the family of curves
s (x, y) = 0. Additionally, at points where the function
h (x, y) 2 0, the matrix polynomial exhibits unbroken PT-
symmetry; otherwise, it exhibits broken PT-symmetry.
The intersection points of the curves s (x, y) = 0 and h (x,
y) = k, for a given k € R, are shown to lie on an ellipse,
hyperbola, two lines passing through the origin, or a
straight line, depending on the nature of PT-symmetry of
the matrix polynomial. The PT-symmetric behaviour of
P (z) at the zeros of the matrix polynomial is also studied.

Keywords: PT Symmetric Operators, Pseudo Hermitian Operators,
Matrix Polynomials

1) Introduction

PT-symmetric and Pseudo Hermitian operators represent a class of
operators that, while generally non-Hermitian, can still yield a real
spectrum. Such operators are important in the field of non-Hermitian
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quantum mechanics and may serve as the Hamiltonians for various
quantum mechanical systems. This perspective allows us to look
beyond the traditional Hermitian framework of quantum mechanics,
which has led to the development of non-hermitian quantum
mechanics and its applications in several areas of physics.

Towards the end of the 1990s, Bender and collaborators demonstrated
that non-Hermitian operators could have a real spectrum by relaxing
the requirement for observables to be Hermitian and instead
emphasizing parity-time reversal (PT) symmetry'®. If all the
eigenstates of a PT-symmetric operator are also eigenstates of the
PT operator, then all of its eigenvalues are real. Otherwise, the
PT-symmetric operator has at least one complex conjugate pair
of eigenvalues’, thereby allowing one to describe systems with
dissipation®. The former scenario is referred to as unbroken PT-
symmetry, while the latter is referred to as broken PT-symmetry*.

Ali Mostafazadeh has studied a specific class of non-Hermitian
operators known as pseudo-Hermitian operators®®, and he showed
that all diagonalizable PT-symmetric Hamiltonians are pseudo-
Hermitian®. The necessary and sufficient conditions for PT-symmetric
and non-Hermitian Hamiltonians to exhibit real spectra have been
investigated by Bender and Mostafazadeh®. Ruili Zhang and
colleagues demonstrated that, in finite-dimensional cases, a PT-
symmetric Hamiltonian is always pseudo-Hermitian, irrespective of
its diagonalizability'’. Additionally, Qing-hai Wang established the
equivalence between PT-symmetric and pseudo-Hermitian matrices
in the context of two-level systems®. The research on non-Hermitian
Hamiltonians continues to be a significant and active area of study''".

Building on the concept of PT-symmetry, we explore matrix
polynomials that exhibit this symmetry. Such an investigation may
demonstrate how the matrix polynomials” properties are related to
the system’s behaviour with PT-symmetry. A matrix polynomial P
is a polynomial in a complex variable with matrix coefficients'®. In
this article, we constructed 2x2 matrix polynomials of the form P (z)
= 27:0 o 7), for the cases n = 1,2, 3, where n is the degree of the matrix
polynomial, o, is the identity matrix and oj,(j = 1,2,3) are the Pauli
matrices. The matrix polynomials constructed in this way are not
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PT-symmetric in general. Therefore, we investigated the question
of which values of z € C, the matrix polynomials, could exhibit PT-
symmetry. Since the trace of P (z) is real, the PT-symmetric nature of
the matrix polynomial can be analysed by two functions associated
with the determinant of P (z), given by s(x, y) and h(x, y). A 2x2
matrix polynomial with real trace exhibits PT-symmetry at all points
z € C, defined by the family of curves s(x, y) = 0. Furthermore, at all
points in the complex plane where the family of curves defined by
s(x, y)=0 intersects with the family of curves h(x, y)=k, such that k>0,
the matrix polynomial has unbroken PT-symmetry. Conversely, if
k < 0, it exhibits broken PT-symmetry.

The matrix polynomials P (z) (for n = 1,2, 3) become Hermitian for
all z lying on the x-axis and for all other z where P (z) (for n = 1,2, 3)
possesses PT-symmetry, it is non-Hermitian. The families of curves
associated with the matrix polynomial P (z) (for n =1, 2, 3), defined
by the equations s(x, y) = 0 and h(x, y) = k for a given k € R, intersect
at most 2n points in the complex plane(note that this is not true if the
functions s(x, y) and h(x, y) are constant functions). In section 2, we
have shown that for some specific values of k, such intersection points
are minimal in number, resulting in the fewest points in the complex
plane where P (z) exhibits PT-symmetry. Further, for the case of P (z)
(n =1), the intersection points of the families of curves s (x, y) = 0 and
h (x, y) = k for a given k#0 are observed to lie on a hyperbola. When k
= (), the intersection point lies on two straight lines passing through
the origin. In the case of P,(z) (n = 2), the intersection points of the
families of curves s (x, y) = 0 and & (x, y) = k lie on a circle for a given
k < 0, and the intersections points lie on an ellipse for a given k > 0.
When k = 0, the intersection points of the families of curves s(x, y) =0
and h(x, y) = k are shown to lie on a straight line (y-axis). In the case
of P (z) (n = 3), the intersection points of the families of curves s(x, y)
= 0 and h(x, y) = k are found to lie on a hyperbola for a given k in the
rangek <k<k , wherethe approximate values obtained are given
byk =-0411andk _=0.347. Whena givenk<k _andk>k , the
intersection points are demonstrated to lie on an ellipse, and when
k =0, intersection points lie on two straight lines passing through the
origin.
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We have also constructed the matrix polynomials denoted by B.(z)
for (n = 1,2, 3) by permuting the coefficient matrices of P (z). The
trace of B,(z) is not real, ‘which imposes an additional restriction to
the points z € C, where F, (z) can be PT-symmetric. This additional
constraint thereby reduces the points z € C where B (z) exhibits PT-
symmetry. Along with other findings, we have also shown that the
set of all solutions of the equations s (x, y) = 0and h (x, y) = £ k:k > 0, for
a very large value of k (of the order of 10"), associated with P,(z) have
the property of being related to reflection across the line y = x. That is,
by knowing the solutions {(x, y)} of the equations s(x, y) = 0 and h(x,
y) =k : k>0, the solutions of the equations s(x, y) = 0 and h(x, y) = —k
: k > 0 can be obtained as {(y, x)}. The nature of PT-symmetry at the
zeros of the matrix polynomials P_(z) and B (z) is also investigated. It
has been observed that at the zeros, the matrix polynomial P (z) (for n
=1, 2, 3) exhibits unbroken PT-symmetry, Whereas, B (z) has no PT-
symmetry at its zeros except for the case n =1.

In the last part, we examine a trace-less matrix polynomial denoted
by Q,,(2)=7" (P,(z)—0,) of degree 10. By plotting the intersection
points of the families of curves associated with Q, (z) defined by
s(x,y)=0 and h(x,y)=k for k=-1, 0.5, 0, 0.5, 1, we demonstrated that
these intersection points lie on a figure closely resembling a slightly
deformed ellipse for k =-1, k ==0.5, k = 0.5 and k = 1 whereas the
intersection points lie on two straight lines passing through the origin
for k = 0. Similarly, for k =+0.0001, some of the intersection points
(16 points) of the families of curves are shown to lie on a slightly
deformed ellipse, while other points (4 points) can be seen to lie on
a different ellipse or two straight lines passing through the origin.
This result may suggest that intersection points are likely to lie on an
ellipse or a slightly deformed ellipse when the absolute value of k is
sufficiently large for matrix polynomial of the form z" (P,(z)-0,) for
any m = 1. Meanwhile, for a small value of k, the intersection points
may lie on different ellipses or deformed ellipses.

We will commence by outlining some fundamental definitions and
notations. The identity matrix o, =I and the Pauli matrices o,, 0,, 0,
together form a basis for M, (C). Therefore, any matrix H € M,(C) can
be expressed as a linear combination of these matrices given by
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h® +h3 Al —ih?
H=0oh™ 0. :|:h1 +ih?  h— h3]
1.1
where, h° = h9 +i h?, 0=(0,,0,0,), and h=hg + ik, =(h} + ik}, h2 +
ih?,h3 + ih})such that h € C*and h,, h, € R® The characteristic
polynomial of H and its roots, respectively, are given by

f(E) = E2-2h°E + (h°)?— h.h 12
E=h’FvVh.h 1.3

hereh=h = h *h —h «h +2ih =h

If a Hamiltonian H is PT-symmetric, it satisfies the condition [H, PT]
= 0, where P represents the parity operator and T is the time-reversal
operator. For any H € M, (C), the commutation relation [H,PT] = 0
is equivalent to H having a real characteristic polynomial®. Therefor
from Eq. (1.2), it can be concluded that H €M, (C) is PT-symmetric if
and only if hj=0and h, = h =0°.

Definition': Let A, A, .. ,An € CPxP be n+1 square matrices with
complex entries, and suppose that A # 0, then P : C -> Cr*?, such that

P(z)=z'A +z"TA _ +.. +zZA+A, 1.4

is a matrix polynomial of degree n. The matrix polynomial P(z) isa p
x p matrix for which each entry is a polynomial in z of degree at most
n. A complex number z is said to be the zero of the matrix polynomial
P(z) if P(z,) is singular. If the leading coefficient A_is non-singular,
then the determinant of P(z) denoted by det[P(z)] is a polynomial of
degree np. Thus a matrix polynomial P of degree n and det(A ) # 0 has
np zeros's.

2) PT-Symmetry and Matrix Polynomials Formed by Pauli
Matrices

In this section, we will analyse the matrix polynomials of the form
Pa(z) =X} 05 7 2.1

for the cases n = 1,2,3 where n is the degree of the matrix polynomial,
0, is the identity matrix and O, (j = 1,2,3) are the Pauli matrices. We
also study the matrix polynomials constructed by permuting the
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coefficient matrices of P (z), which is denoted by P (z). These matrix
polynomials are not PT-symmetric in general. So we are interested in
finding all z € C where the matrix polynomial exhibits PT-symmetry.
Since all 2x2 PT-symmetric matrices are also pseudo hermitian®, at
the points where the matrix polynomials are PT-symmetric, it is also
Pseudo Hermitian. For the following discussions, we introduce two
functions, s(x,y) and h(x,y), to characterize the nature of PT-symmetry
of a matrix polynomial. The functions are given by

s(x,y) =h, = h, (2.2)
h(x,y) =h,=h,—h =h, (2.3)

where 1, and 1, are the vectors associated with the matrix polynomial
when expressed as Eq. (1.1). By making use of Eq. (1.3) the determinant
of a 2x2 matrix polynomial can be expressed as

det[P(2)] = (h%)’— (h?)* — h(x, y) + i2(RSh? —s(x, y)) (2.4)
where h} and h} are functions of x and y. For any 2x2 matrix
polynomial, the determinant is a polynomial in z, and there exists at
least one z = (x,y) € C such that the determinant becomes real. Hence
if the trace of a matrix polynomial is real, it exhibits PT-symmetry at
least one point in the complex plane. More precisely, if the trace of a
2x2 matrix polynomial is real, then the matrix polynomial exhibits
PT-symmetry at all z = (x.v7) € C where s(x,y) = 0, where its eigenvalues
are given by E = h% + ,/h(x,y). In addition, at those points where h(x,
y) =k : k 2 0, the matrix polynomial has real eigenvalues given by
E = h% + i./|k| (unbroken PT-symmetry). Similarly, at those points
where h(x, y) = k : k < 0, the matrix polvnomial has complex pairs
of eigenvalues given by E = hQ * i J1kl (broken PT-symmetry).
If the trace of a 2x2 matrix polynomial is not real, then the matrix
polynomial exhibits PT-symmetry at all z = (x,y) € C where s(x,y) =
0 and the imaginary part of the trace becomes zero, i.e. when h{= 0.
This additional requirement may reduce the number of points in the
complex plane where the matrix polynomial possesses PT-symmetry.
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2.1. PT-Symmetry in Matrix Polynomials of Degree 1

1. Consider the matrix polynomials of degree-1, given by
Pz) =X} p0izl = oy + O (ZOO)=1 z
j=09j 0 “NE z 1 (2.5)

The matrix polynomial P (z) is generally not PT-symmetric. Since
the trace of P (z) is real, the PT-symmetric nature of P (z) can be
characterized by the functions given by

s(x, y) =xy (2.6)

h(x, y) = x>=y? (2.7)
P (z) is given by

det[P,(z)] =1-2z>=1-h(x, y) - i2s(x, y) (2.8)

The matrix polynomial P (z) is PT-symmetric at all points in the
complex plane defined by the equation s(x,y) = 0. The points in the
complex plane where the families of curves s(x,y) =0 and h(x,y) =k : k
> ( intersect are along the x-axis, whereas the points where the curves
s(x,y) =0and h(x,y) = k : k < 0 intersect are along the y-axis. For a given
k # 0, the curves h(x,y) = k and s(x,y) = 0 intersect at two points, and
the intersection points lie on hyperbola given by Eq. (2.7) as shown in
Fig-1-(a) and Fig-1-(c). When k = 0, the curves intersect at the origin,
as shown in Fig-1-(b). Thus corresponding to the points on the x-axis
P (z) becomes a symmetric matrix and has real eigenvalues given by
E =1+ x and corresponding to the points on the y-axis P,(z) becomes
normal, with the property [P,(z)]'P,(z) = P,(2)[P,(2)]' = o, det[P (z)],
and has complex conjugate pairs of eigenvalues given by E = 1#iy.
The points (+1,0), where the curves s(x,y) = 0 and h(x,y) = 1 intersect
(as shown in Fig-1-(c)), are the zeros of the matrix polynomials. The
matrix polynomial exhibits unbroken PT-symmetry at the zeros.

Note that the det[P (z*)] = (det[P,(z)])’, and det[P (-z)] = det[P,(z)] i.e,
the determinant has conjugate symmetry and even properties. Hence,
the points where curves s(x,y) = 0 and h(x,y) = k intersect for a given k
will be symmetric about the x-axis or about the origin.
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(@) (b)

FIG. 1. Intersections of the families of curves s(x,y) = xy = 0 (Yellow) and
h(x,y) = x*—y* = k (Blue) for the cases: (a) k=-1, (b) k=0, (c) k=1
2) Now consider the matrix polynomial of degree 1, constructed by
permuting the coefficient matrices of P (z), given by

Pi(z)=0pz+0 * (1,0,0) = |:i i:l
(2.9

The trace of P,(z) = 2z is not real. In this case, the functions s(x,y)
and h(x,y) are constant functions and always have the values 0 and 1
respectively. Hence, P, (2) becomes PT-symmetric when the trace of
the matrix polynomial becomes real, i.e., along the x-axis where P; (2)
is a symmetric matrix and has unbroken PT-symmetry with real
eigenvalues E = x + 1. The zeros of P,(z) coincide with the zeros of
P (z) i.e, the points (1, 0), where P, (2) has unbroken PT-symmetry.

2.2. PT-Symmetry in Matrix Polynomials of Degree 2

1) Consider the matrix polynomial of degree 2 given by

X — T2
PZ(Z) = Z?:O O—]'Z] = 00 + 0. (Z, ZZIO) ={Z “}“11:22 z 1LZ ]

(2.10)
The determinant of P,(z) is given by

det[P,(z)] = 1-z°-z* = 1-h(x,y)—i25(x,y) (2.11)

The matrix polynomial P,(z) is generally not PT-symmetric. The
functions s(x, y) and h(x, y) associated with the matrix polynomial are
given by
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s(x,y) = xy + 2xy(x*= %) (2.12)
hxy) = Hx= )= () (2:13)

The trace of the matrix polynomial P,(z) is real. Hence, the set of
points in the complex plane for which P (z) can be PT symmetric is
the same as the set of points where s(x,iy) = 0. For a given k, there are
four points in the complex plane where the families of curves s(x,y)
= 0 and h(x,y) = k of P (z) intersect or the matrix polynomial exhibits
PT-symmetry, except for the value of k =0 and k =—0.25. For k =0, there
are three points where the families of curves s(x,y)=0 and h(x,y)=k
intersect or P,(z) exhibits PT-symmetry, and all three points lie on
the y-axis, as shown in Fig-2-b. The intersections of the curves s(x,y)
= 0and h(x,y) = k for k = —1,0,1 are shown in Fig-2. The four zeros of
the matrix polynomial are at the points defined by the intersection of
the curves s(x,y) = 0 and h(x,y) =1 as shown in Fig-2-(c). At the zeros
of the matrix polynomial, P,(z) has unbroken PT-symmetry and has
eigenvalues E =0, 2.

©
T

=2

-4}

(a) (b) (<)
FIG. 2. Intersections of the families of curves s(x,y) = xy+2xy(x*=y?) = 0
(Yellow) and h(x,y) = x*+(x*=y?)*=(y*+4x?y?) = k (Blue) for the cases: (a) k =
-1, (b)k=0,(c) k=1

Atall points on the x-axis, P,(z) is Hermitian (unbroken PT-symmetry)
with eigenvalues E = 1tx /1 4 x2; at all other points, P,(z) is non-
hermitian and non-normal. Further, Eq.(2.13) implies that for all points
on the y-axis where |y| <1and |y| # 0, h(x,y) <0 and hence P,(z)
must have broken PT-symmetry with eigenvalues E =1 + iy \/y2 — 1
and for all points on the y-axis where |y | > 1, h(x,y) > 0 and therefore
exhibit Unbroken PT-symmetry with eigenvalue E =1+ y,/y2 — 1.
For a given value of k < -0.25, the curves have no intersection on the
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x or y axis, as shown in Fig-3-(a) (for the range of —0.5 < k < -0.251).
When k = -0.25, we get the least number of points where the families
of curves intersect, and these two points lie on the y-axis, as shown
in Fig-3-(b). For a given —0.25 < k < 0, all 4 points lie on the y-axis, as
shown in Fig-3-(c) (for the range of —0.249 < k < 0).

15 15 15T g

1.0f 10f 10f

4 05}

0.0F {1 00f

4 -1.0F

-15h d -15h A

-1,5. -A1“UA ‘-AO.‘F’ ’ OTU ; ‘;3.5 10 15 -1,‘5‘ .-1I.0 -AO.AS‘ r 0:0 1 ;Jf; 1 1TD I :Ir5
[a\ 1k i\
Fig. 3. Intersections of the families of curves s(x,y) = xy+2xy(x*-y*) =0
(Yellow) and h(x,y) = x*+(x*=y?)*—(y*+4x%y?) = k (Blue) for the cases: (a) 0.5
<k<-0.251 (b) k =-0.25, (c) ~0.249 <k <0

Note that det[P,(z)] has conjugate symmetry, and the property
det[P,(z)] = det[P,(—z)] (even). These properties of the determinant of
P,(z) suggest that the solutions of the equations s(x,y) = 0 and h(x,y)
= k can lie on an ellipse or hyperbola or two straight lines passing
through the origin or along a straight line. For a given value k < —0.25,
the curves have no intersection on the x or y-axis. Therefore, four
intersection points can be seen lying on a circle because of conjugate
symmetry and even properties of the determinant. That s, if (x# 0, y#
0) is a solution, then the other three solutions must be {(-x, -y), (-, y),
(%, -y)}. Thus, when k < —0.25, all solutions must lie on a circle and at
all points on the circle, P,(z) has broken PT-symmetry.

For example by solving for the four points (x,y) satisfying s(x,y) = 0
and h(x,y) = -1 we get the points: {(x,y), (-x,—y), (-x,y), (x,—y)} where
X = % andy = Jz—g All these points lie on the unit circle, as shown in Fig-
4-a. These points can also be seen as lying on an ellipse, a hyperbola,
or two straight lines passing through the origin. If a solution lies
on the y-axis, then the conjugate property or even property of the
determinant function guarantees one more solution symmetric to
the x-axis. If a solution lies on the x-axis, then even property of the
determinant function guarantees one more solution symmetric to
the y-axis. Thus, if the curves intersect on the x-axis or y-axis, the
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remaining solutions need not lie on a circle. This is what happens
for a given value of k > 0; out of the four points where the families of
curves s(x,y) = 0 and h(x,y) = k intersect, two points lie on the x-axis
and the other two on the y-axis symmetrically, these points can be
seen as lying on an ellipse. At all these points on the ellipse P,(z) has
unbroken PT-symmetry.

For example, by solving for the four points {(x,y)} satisfying s(x,y) =0
and h(x,y) =1 we get the points: {(0,y,), (0,~v,), (x,,0), (-x,,0)}, where
y, = 1.27202, x, = 0.786151. All these points lie on the ellipse with the
length of the semi-major axis equal to y, and the length of the semi-
minor axis equal to x,, as shown in Fig-4-b.

AR

— At
7 3
]

(a) (b)
Fig. 4. Intersections of the families of curves s(x,y) = xy+2xy(x>~y*) =0
(Yellow) and h(x,y) = x*+(x*=y?)*=(y*+4x*y?) = k (Blue) for the cases: (a) k =
- k=1

4

From the above discussion, we have the following realization about
the matrix polynomial P,(z). Along all points on the x-axis, P,(z) is
hermitian and has unbroken PT-symmetry. Along all points on the
y-axis where |y| <1and |y| #0, P,(z) has broken PT-symmetry and
for all points where |y| > 1, P,(z) has Unbroken PT-symmetry. For
a given k > 0, the intersection points of the families of curves s(x,y) =
0 and h(x,y) = k lie on an ellipse. For given —0.25 <k <0, intersection
points of the families of curves lie on the y-axis. Finally, for all k <
—0.25, intersection points of the families of curves lie on a circle.
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3) Now consider the matrix polynomial of degree 2, constructed by
permuting the coefficient matrices of P,(z), given by

_ g7
P,(2) = 0yz + 0.(2%,1,0) =|: z z L:|

z24+i  z
(2.14)
The determinant of P, (z) is given by
det[P,(2)] = 22-z*~1 = x*~y*~h(x,y)+i2(xy—s(x,y)) (2.15)

The trace of P,(z) = 2z is complex and the functions s(x, y) and h(x, y)
associated with the matrix polynomial are given by

s(x, y) = 2xy(x*=1?) (2.16)
hix, y) = (x* — y*)*+1-4x%y? (2.17)

The matrix polynomial P,(z) exhibits PT-symmetry when the trace
becomes real i.e., y = 0 and s (x, y) = 0. Hence, P,(z) possesses PT-
symmetry only along the x-axis, where it becomes Hermitian and
has unbroken PT-symmetry with eigenvalues E = x + /x* + 1 . The
zeros of the matrix polynomials are defined by the intersection of the
curves given by

xy—s(x,y) =0 and (2.18)
=y~h(xy) = 0 (2.19)

where s(x,y) and h(x,y) are given by Eq. (2.16) and Eq. (2.17)
respectively. At the four zeros of the matrix polynomial, P,(2) is not
PT-symmetric since the curves defined by Eq. (2.18) and Eq. (2.19)
have no intersection on the x-axis as shown in the Fig-5.
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Fig. 5. Zeros of P,(z) defined by the intersection of the families of curves
xy—2xy(x* —y?) = 0 (Yellow) and x* —y* —((x* —y?)* +1— 4x*y?) = 0 (Blue)

In this case, for a given k# 1, the families of curves h(x, y) =kand s(x, y) =
0 intersect at four points such that when k < 1, there are no intersection
points on the x-axis as shown in Fig-6-(a) and consequently no PT-
symmetry and when k > 1, two intersection points are on the x-axis
symmetrically as shown in Fig-6-(c). When k = 1, the curves intersect
at one point (origin), as shown in Fig-6-(b). Thus, when the trace of a
matrix polynomial is not real in general, the additional constraint on
points in the complex plane where the trace of the matrix polynomial
is real reduces the number of points where it can be PT-symmetric.

g

4p T T T 0 4P T T T q 4 T T T
SO
of 4 of 1 of

L ] TR PR SR d=-4b . o + o4 , 4 Ny, d=-4b , o o % 40 GNy 0 d
- -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Fig. 6. Intersections of the families of curves s(x, y) = 2xy(x* —=y?) = 0 (Yellow)
and h(x, y) = (x* —y*)2 +1-4x%* = 0 (Blue), for the cases: (a) k=0, (b) k =1,(c)
k=2
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2.3. PT-Symmetry in Matrix Polynomials of Degree 3
Consider the matrix polynomial of degree-3 given by

3 _i,2
Ps(z) = 0o+ 0 * (2,2, 2°) =[1+ Z lz]

z+iz> 1-2° (2.20)
The determinant of P (z) is given by
det[P,(z)] = 1-z-z*-z° = 1-h(x,y)—i2s(x,y) (2.21)

The matrix polynomial P,(z) is not PT-symmetric for all z values. The
functions s(x,y) and h(x,y) associated with the matrix polynomials are
given by

s(x,y) = xy+2xy(x*=y?)+(x*-3xy?) Bx*y—1°) (2.22)
h(x,y) = x*=y?+y*=y*+x*(1-15y*)+x*(1-6y*+15y*) (2.23)

The trace of matrix polynomial P.(z) is real, and hence it is PT-
symmetric at all points where s(x, y) = 0. The six zeros of the matrix
polynomial are at the points defined by the intersection of s(x, y) =
0 and h(x, y) =1, as shown in Fig-7-a; at these points, the matrix
polynomial has unbroken PT-symmetry with eigenvalues E = 0, 2.
At all points on the x-axis P,(z) is Hermitian, and at all other points,
P.(z) is non-hermitian and non-normal. There are, at most, six points
where the curves s(x, y) = 0) and h(x, y)=k : k € R, for a given k intersect.
When k =0, two curves among the family of curves defined by the
equation h(x, y) = k merge at the origin, as shown in Fig-7-b, leading to
the least number of points where P (z) has PT-symmetry for a given
k. Thus when k = 0 there are 5 points where s(x,y) = 0 and h(x,y) = k
intersect. The number of points where P, (z) is PT-symmetric is six

except at k = 0.

-4 -2 (al; -4 -2 (bC; 2 4 -4 -2 (CC; 2 4
Fig. 7. Intersections of the families of curves s(x,y) = xy+2xy(x* —y*)+(x* —3x1%)
(Bx*y—1?®) = 0 (Yellow) and h(x,y) = x®—y? +y* — yo+x*(1-15y%) +x*(1-6*+151*) =
0 (Blue), for the cases: (a) k=1, (b) k=0, (c) k=-1
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As we discussed in the earlier case, det[P,(z)] also has conjugate
symmetry, and the property det[P,(z)] = det[P,(—z)] (even).

Hence, solutions of the equations s(x, y) = 0 and h(x, y) = k, for a given
k, could lie on an ellipse or hyperbola or two straight lines passing
through the origin or along a straight line. If there exists one solution
(x # 0,y # 0), then there must exist three other solutions given by
{(=x,—y), (—x,y), (x,—y)}. Further, the remaining two solutions must lie
on the x-axis or y-axis due to conjugate symmetry and even properties
of det[P,(z)]. The intersection points of the families of curves s(x, y) =
0 and h(x, y) = k for k = 0 lie on two lines passing through the origin
since one intersection point lies on the origin and the remaining four
points are not on x-axis or y-axis. For a given value of k in the range
0<k <k__, where k__ =0.347(approximately), four intersection points
are given by {(x,,v,), (—x,,—v,), (—x,y,), (x,—y,) : x,# 0y, # 0} and the
remaining two intersection points are given by {(x,,0), (—x,,0), : x#0,},
where |x,| < |x,|.Since |x,| < |x, |, these points lie on a hyperbola
together. when the given value of k > k__, four intersection points
are given by {(x1/y1)' (_x1’_y1)/ (_x1'y1)/ (xv_%) - X # 0, Yi # 0} and
the remaining two intersection points are given by {(x,, 0), (—x,, 0), :
x2#0,}, where |x,| > |x,|.Since |x,| > |x, |, these points lie on an
ellipse together. Similarly, for a given value of k_ <k <0, wherek_ . =
—0.411(approximately) the six intersection points lie on a hyperbola,
and for a given k < k__, the six intersection points lie on an ellipse.
Thus, for a given k. <k<k_ :k#0, intersection points lie on a
hyperbola; otherwise, they lie on an ellipse.

For example, the transition from intersection points lying on a
hyperbola to those on an ellipse around x_._ and x__ can be realized
by solving the following equations for the numerical values of x
and y, where s(x, y) and h(x, y) are given by Eq.(2.22) and Eq.(2.23)
respectively.

Examples

1) s(x, y) = 0, h(x, y) = —0.411: Solving the equations, we get the

solutions given by {(x,y,), (x,~v,), (=x.v,), =x,~v,), 0,y,), (0,
y,)}, where x, = 0.565899, y, = 0.739613 and vy, = 0.739209.
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These points can lie on the hyperbola:y_z - % = 1 withb=y,. Since
b <y, these points cannot lie on an elfipse‘.l -

(x1)°b
The value of a can be found using the equation a* = bz_l(yl)z

s(x, y) = 0, h(x, y) = —0.412: solving the equations, we get the
solutions given bY {(xp %)/ (xp _%)/ (_xp y1)/ (_xp —%)/ (O/ yz)/ (O/
—1,)}, where x, = 0.566204, y, = 0.739425 and y, = 0.74005.

These points can lie on the ellipse: = + i— =1with b =y,. Since y,
< b, these points cannot lie on a hyperbola. The value of a can be

. . i u In2
found using the equation g2 = :-% :
i %

s(x, y) =0, h(x, y) = 0.347: solving the above equations, we get the
solutions given by {(x,y,), (x,—v,), (=x,vy,), (—x,—v,), (x,,0), (x,,0)},
where x, = 0.51107, y, = 0.94431 and x, = 0.510938.

These points can lie on the hyperbola: z—j - z—z = 1with a = x,, these
points cannot lie on an ellipse. The value of b can be found by
using the equation » = -2~

(x)? —a?’

s(x, y) =0, h(x, y) = 0.348: solving the above equations, we get the

solutions given by {(x,, v,), (x;, =), (=X v,), (=x,, =), (x,, 0), (x,,
0)}, where x, = 0.511115, y, = 0.944488 and x, = 0.511504.

These points can lie on the ellipse: §+§= 1 with & = x; Since
X1 = @, these points cannot lie on a hyperbola.

(yp’a?
a? = (x1)% *

The value of b can be found using the equation »* =

The contour plots of s(x, y) =0 and h(x, y) =k : —0.411 <k <0 and s(x,
y) =0and h(x, y) =k : 0 < k <0.347 are shown in Fig-8-a and Fig-8-b
respectively.
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Fig. 8. Intersections of the families of curves s(x,y) = xy+2xy(x*
=y +(x® =3xy?) (Bx*y—1°) = 0 (Yellow) and h(x,y) = x® —y* +y* —
yo+x*(1-15y) +x*(1-6y*+15y*) = k (Blue), for the cases: (a) -0.411 <k <0, (b) 0
<k<0.347

The Intersections of the families of curves, s(x, y) = 0 and h(x, y) = k for
k =1,0.2,0,-0.2,—1, along with the corresponding intersection points
lying on an ellipse with semi-major axis along the y-axis 5+%=1 (a
= (0.737353, b = 1.52), hyperbola intersecting the x-axis %-%=1 (a =
0.409047, b=1.05958), two straight lines passing through the origin y
= +V3x, a hyperbola intersecting the y-axis - 5+%=1 (a = 0.4042, b =
0.49544), and the unit circle are shown in Fig. 9.

| \y % ;& y\x (/ w V S

F1g 9. Intersectlons of the famﬂles of curves s(x y) = xy+2xy(x2
—12) + (x* =3xy?) Bx*y—y’) = 0 (Yellow) and h(x,y) = x° —y* +y* —

y6+x4(1—15y2)+x2(1—6y2+15y4) =k (Blue), for the cases: (a) k=1, (b)k = 0.2, (c) k
=0,(d)k=-02, (e) k=-1

From the above discussion, we have the following conclusions about
the matrix polynomial P,(z). Along all points on the x axis, P,(z), is
Hermitian and has unbroken PT-symmetry, and along all points
on the y-axis, it has broken Pt-symmetry. Further, for a given k, the
solution of the equations s(x, y) = 0 and h(x, y) = k or, in other words,
the intersection points of the families of curves s(x, y) =0 and h(x, y) =
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k are found to lie on a hyperbola when kis in therangek . <k<k__,
where the approximate values obtained are given by k . = —0.411
and k= 0.347. When a given k <k __ and k > k__, the intersection
points lie on an ellipse, and when k = 0, intersection points lie on
two straight lines passing through the origin. Also, for a given k, the
solution of the equations s(x, y) = 0 and h(x, y) = k or the intersection
points of the families of curves defined by the equations lie 10 on a
hyperbola that intersects x-axis then at these intersection points P,(z)
exhibits unbroken PT-symmetry and if the intersection points lie on a
hyperbola that intersects the y-axis, then at these points, P,(z) exhibits
broken PT-symmetry.

1) Now consider the matrix polynomial of degree-3, constructed by
permuting the coefficient matrices of P,(z) given by

~ -
P;(2) = 0pz + 0.(2%,23,1) =LZ+1 z iz ]

2473 z-1 (2.24)
The determinant of P;(z) is given by
det[P;(2)]=22-z*28-1= x>-y>-h(x,y)+2i(xy-s(x,y)) (2.25)

The trace of matrix polynomial P;(z)=2z is not real, which puts
additional restriction on the points in the complex plane where
the matrix polynomial can be PT-symmetric other than where s(x,
y) = 0. The functions s(x, y) and h(x, y) associated with the matrix
polynomials are given by

s(x, y) = 2xy(x*y?) + (x>-3x)(3x%y - y°) (2.26)
h(x, y) = 1+x*+y*—y*+x*(1—-15y?)+3x%y?*(—2+5y?) (2.27)

The matrix polynomial P;(z) is PT-symmetric at the points where y =
0 and s(x, y) = 0, that is, along the x-axis. Thus, when P;(2) becomes
PT-symmetric, it necessarily needs to be Hermitian. The six zeros of
the matrix polynomials are shown in Fig-10, where x* —y* =h(x, y) =
0 and xy—s(x,y) = 0. In the case of P;(z), none of the zeros are on the
x-axis; hence, at the zeros of the matrix polynomial, PT-symmetry
cannot be observed.
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Fig. 10. Zeros of P;(z) as intersections of the families of curves xy—s(x,y) = 0
(Yellow) and x*=y? —h(x,y) = 0 (Blue)

When the values of k <1, the function h(x, y) = k have no intersection
on the x axis as shown in Fig-11-(a) (for 0 < k < 1) and hence 7(2),
shows no PT-symmetry when k < 1. The curve h(x, y) = k intersects at
one point on the x-axis (origin) when k =1 as shown in Fig-11-(b), and
it intersects at two points on the x-axis symmetrically, when k > 1 as
shown in Fig-11-(c) (for k=2)

7

v
ANLANL

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 o 1 2 3
(a) (b) (c)

NV
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Fig. 11. Intersections of the families of curves s(x,y) = 2xy(x* —y?)+(x* =3x1?)
(Bx*y—y?) = 0 (Yellow) and h(x,y) = 1+x° +y* =1 + x*(1-15y%)+3x*y*(—2+5%) =
k (Blue), for the cases: (a) 0 <k <1, (b)k=1, (c) k=2

2.3.1. Solutions of s(x, y) =0 and h(x, y) = xk : k > 0, for very
large value of k

In the case of the matrix polynomials P,(z), we examine the solutions
of the equations s(x, y) = 0 and h(x, y) = £k, for very large value of k =
10"
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When h(x, y) = k =10", the solutions of the equations are given by:
1), =y, (—xpy,), (—x,—y,), (x,0), (x,,0)} where x, = 340.646, y,
=590.016, and x, = 681.292. At all these points, the matrix polynomial
has the eigenvalues given by E = 1+Vk

When h(x, y)=k=—10Y, the solutions of the equations are given by:
(), V=x), (=Y,.%), (=Y,,—x,), (0x,), (0,x,)}

At all these points, the matrix polynomial has the eigenvalues given

by E = 1+ i\/]kl .

The above results suggest that for very large values of k of order 10",
the Solutions of s(x, y) = 0 and h(x, y) = +k : k > 0, have reflection
property across the line y = x. That is, by knowing the solutions {(x,
y)} of the equations s(x, y) = 0 and h(x, y) =k : k > 0, the solutions of
the equations s(x, y) =0 and h(x, y) = —k : k> 0 can be obtamed as {(y,
x)}. Thus, if one set of solutions lies on the elhpses —+3>=1, then the
other set of solutions lies on the ellipse = 4 ¥* _ { for h(x y) k and h(x,
y) = -k respectively. Similar result has been“observed for the case B, ()
also, for very large value of k = 10". Since P;(2) exhibits PT-symmetry
only for h(x, y) = k; k 2 1, even if the reflection property exists PT-
symmetry cannot be observed for k = —10".

2.4. PT-Symmetry in matrix polynomial of degree 10
Now we consider a matrix polynomial of degree-10, of the form z™

(P,(z)—0,) for m = 7 given by

Qu() = (z5,2° zw)—[z g ZS_‘Z‘l"fg]
(2.28)

The determinant of Q, (z) is given by
det [Q,,(2)] = -(z' + 2" + 2) = ~(h(x, y) + i25(x, y)) (2.29)

The matrix polynomial Q, (z) is not PT-symmetric for all z values. The
functions s(x, y) and h(x, y) associated with the matrix polynomials
are given by.

s(x, y) = (8x7y—56x°y*+56x°y°—8xy’) (x5—28x°y*+70x*y* —28x*y +1°)
+(x°=36x7y*+126x°y* —84x°y+9xy®) (9x®y—84x°y +126x*°—36x%y +1°)
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+(10x°%y —120x7° + 252x°y° - 120x°y” + 10x1°) (x'° - 45x%y* + 210x°y* -
210x*y° + 45x%°* —y'°)

h(x,y) = x*+x"¥(1-=190y%) +x*y*(—=120+153y2=190y*) +y'*(1—y*+y*)
—286x1%5(28—1531*+646y*) — 60x"y*(2—511*+646y*)
+5x1y12(364—612y7+969y*) + 78x%y¥(165—561y*+16151)
+26x124(70—714y>+4845y*) + x'°(1—153y>+484517)
—4x%y'°(2002—46411*+9690y*). (2.30)

Since Q,(z) is traceless, it is PT-symmetric at all points where s(x, y)
= 0. The family of curves s(x, y) = 0 and h(x, y) = k : k # 0 intersect at
20 points and when k = 0 intersection points are reduced to 5. The
eigenvalues of the matrix polvnomial at the intersection points are
given by E = +Vk and E = ii\/m , for k > 0 and K < 0, respectively.
When | k| 21, the intersection points lie on a slightly deformed ellipse
as shown in Fig-12-(a) (for k = —1) and Fig-12-(c) (for k = 1). When k
= 0, the curves intersect at the points given by {(x,y), (x,—y), (-x, v),
(-x,-y), (0,0)}: where x= % and y= g as shown in Fig-12-(b).

Around the value of | k| =0.5, all the intersection points are observed
to lie on a slightly deformed ellipse, as shown in Fig-13-(a) (for k=-
0.5) and Fig-13-(b)(for k=0.5). As the value of |k| approaches zero,
the intersection points are observed to not lie on a single ellipse or a
single deformed ellipse; instead, 4 points lie on one ellipse, and the
remaining 16 points are shown to lie on another deformed ellipse, as
shown in Fig-13-(c) (for k=-0.0001) and Fig-13-(d) (for k=0.0001). This
structure continues until k = 0, and when k = 0, the five intersection
points lie on two straight lines passing through the origin.
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0 of 4 O
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Fig. 12. Intersections of the families of curves s(x, y)(Yellow) and h(x, y) =
k(Blue), of Q, (z) for the cases: (a) k= -1, (b) k=0 (c) k=1
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Fig. 13. Intersections of the families of curves s(x, y)(Yellow) and h(x, y) = k
(Blue), of Q,,(z) for the cases: (a) k = —=0.5, (b) k = 0.5, (c) k = —0.0001, (d) k =
0.0001

This result may suggest that for matrix polynomial of the form z"
(P,(z)-0,), all the intersection points are likely to lie on an ellipse or a
slightly deformed ellipse when the absolute value of k is sufficiently
large (i.e., not close to zero) for any m > 1. In contrast, for small values
of k, the intersection points are likely to lie on different ellipses or
deformed ellipses.

3. Summary

2x2 matrix polynomials of the form P (z) = Z}LO Uij forn=1,2,3are
examined for their PT-symmetric nature in the complex plane. The
points where such matrix polynomials exhibit broken PT-symmetry
and unbroken PT-symmetry are analyzed. It is demonstrated that
these points lie on geometric figures such as hyperbolas, ellipses, two
lines passing through the origin or straight lines.

Furthermore, the matrix polynomial P,(z), for a given k:k > 0 and
sufficiently large, the points where eigenvalues of the matrix
polynomial equal to 1+/k and the points where eigenvalues equal
to 1+i\/k are shown to be related by reflection across the line y = x.
The matrix polynomial P (z) for the cases n =1, 2, 3 is found to have
unbroken PT-symmetry at all of their zeros.

Matrix polynomial B, (z) are constructed by permuting the coefficient
matrices of P (z) for n =1, 2, 3 and are found to not possess PT-
symmetry at the zeros of the matrix polynomials except for n = 1.
A matrix polynomial of degree 10 of the form z" (P,(z)-0,) is also
examined, leading to the speculation that the points where it can
have eigenvalues +Vk or +ivk(with k positive and sufficiently large)
lie on an ellipse or a slightly deformed ellipse for any m > 1. When the
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value of k is close to zero, the points may lie on different ellipses or
deformed ellipses.
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