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PT-Symmetry in 2×2 Matrix Polynomials 
Formed by Pauli Matrices

Stalin Abraham* and Ameeya A Bhagwat*

Abstract

2×2 matrix polynomials of the form Pn(z) = j z
 j are 

constructed for the cases n = 1,2, 3, where n is the degree 
of the matrix polynomial, 0 is the identity matrix, and 

j, (j = 1,2,3) are the Pauli matrices. The nature of PT-
symmetry of the matrix polynomials is examined across 
different points z = (x, y) in the complex plane. The PT-
symmetric properties of Pn(z) can be characterized by two 
functions, denoted by s(x,y) and h(x,y). If the trace of the 
matrix polynomial is real, then the points at which it can 

s (x, y) = 0. Additionally, at points where the function 
h (x, y)  0, the matrix polynomial exhibits unbroken PT-
symmetry; otherwise, it exhibits broken PT-symmetry. 
The intersection points of the curves s (x, y) = 0 and h (x, 
y) = k, for a given k  , are shown to lie on an ellipse, 
hyperbola, two lines passing through the origin, or a 
straight line, depending on the nature of PT-symmetry of 
the matrix polynomial. The PT-symmetric behaviour of 
Pn(z) at the zeros of the matrix polynomial is also studied.

Keywords: PT Symmetric Operators, Pseudo Hermitian Operators, 
Matrix Polynomials

1) Introduction

PT-symmetric and Pseudo Hermitian operators represent a class of 
operators that, while generally non-Hermitian, can still yield a real 
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mechanics and its applications in several areas of physics. 

Towards the end of the 1990s, Bender and collaborators demonstrated 
that non-Hermitian operators could have a real spectrum by relaxing

emphasizing parity-time reversal (PT) symmetry1-3. If all the 
eigenstates of a PT-symmetric operator are also eigenstates of the 
PT operator, then all of its eigenvalues are real. Otherwise, the 
PT-symmetric operator has at least one complex conjugate pair 
of eigenvalues4, thereby allowing one to describe systems with 
dissipation5. The former scenario is referred to as unbroken PT-
symmetry, while the latter is referred to as broken PT-symmetry4. 

operators known as pseudo-Hermitian operators6-8, and he showed 
that all diagonalizable PT-symmetric Hamiltonians are pseudo-
Hermitian6

and non-Hermitian Hamiltonians to exhibit real spectra have been 
investigated by Bender and Mostafazadeh8,9. Ruili Zhang and 

symmetric Hamiltonian is always pseudo-Hermitian, irrespective of 
its diagonalizability10. Additionally, Qing-hai Wang established the 

in the context of two-level systems5. The research on non-Hermitian 
11-17. 

Building on the concept of PT-symmetry, we explore matrix 
polynomials that exhibit this symmetry. Such an investigation may 
demonstrate how the matrix polynomials’ properties are related to 
the system’s behaviour with PT-symmetry. A matrix polynomial P 

18. In 
this article, we constructed 2×2 matrix polynomials of the form Pn(z) 
= j z

j, for the cases n = 1,2, 3, where n is the degree of the matrix 

0 j,(j = 1,2,3) are the Pauli 
matrices. The matrix polynomials constructed in this way are not 
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of which values of z  , the matrix polynomials, could exhibit PT-
symmetry. Since the trace of Pn(z) is real, the PT-symmetric nature of 
the matrix polynomial can be analysed by two functions associated 
with the determinant of Pn(z), given by s(x, y) and h(x, y). A 2×2 
matrix polynomial with real trace exhibits PT-symmetry at all points 
z  s(x, y) = 0. Furthermore, at all 

s(x, y)=0 intersects with the family of curves h(x, y)=k, such that , 
the matrix polynomial has unbroken PT-symmetry. Conversely, if 
k < 0, it exhibits broken PT-symmetry.

The matrix polynomials Pn(z) (for n = 1,2, 3) become Hermitian for 
all z lying on the x-axis and for all other z where Pn(z) (for n = 1,2, 3) 
possesses PT-symmetry, it is non-Hermitian. The families of curves 
associated with the matrix polynomial Pn(z)

 , intersect 
at most 2n points in the complex plane(note that this is not true if the 
functions s(x, y) and h(x, y) are constant functions). In section 2, we 

are minimal in number, resulting in the fewest points in the complex 
plane where Pn(z) exhibits PT-symmetry. Further, for the case of P1(z) 
(n = 1), the intersection points of the families of curves s (x, y) = 0 and 
h (x, y) = k for a given  are observed to lie on a hyperbola. When k 
= 0, the intersection point lies on two straight lines passing through 
the origin. In the case of P2(z) (n = 2), the intersection points of the 
families of curves s (x, y) = 0 and h (x, y) = k lie on a circle for a given 
k < 0, and the intersections points lie on an ellipse for a given k > 0. 
When k = 0, the intersection points of the families of curves s(x, y) = 0 
and h(x, y) = k are shown to lie on a straight line (y-axis). In the case 
of P3(z) (n = 3), the intersection points of the families of curves s(x, y) 
= 0 and h(x, y) = k are found to lie on a hyperbola for a given k in the 
range kmin max, where the approximate values obtained are given 
by kmin kmax = 0.347. When a given k < kmin and k > kmax, the 
intersection points are demonstrated to lie on an ellipse, and when 
k = 0, intersection points lie on two straight lines passing through the 
origin.
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We have also constructed the matrix polynomials denoted by  
Pn(z). The 

trace of  is not real, which imposes an additional restriction to 
the points z  , where  can be PT-symmetric. This additional 
constraint thereby reduces the points z   where  exhibits PT-

s (x, y) = 0 and h (x, y) = ± k:k > 0, for 
a very large value of k (of the order of 1017), associated with P3(z) have 

y = x. That is, 
by knowing the solutions {(x, y)} s(x, y) = 0 and h(x, 
y) = k : k > 0 s(x, y) = 0 and 
: k > 0 can be obtained as {(y, x)}. The nature of PT-symmetry at the 
zeros of the matrix polynomials Pn(z) and  is also investigated. It 
has been observed that at the zeros, the matrix polynomial Pn(z) (for n 
= 1, 2, 3) exhibits unbroken PT-symmetry, Whereas,  has no PT-
symmetry at its zeros except for the case n = 1. 

In the last part, we examine a trace-less matrix polynomial denoted 
by Q10(z)=z7 (P3(z 0) of degree 10. By plotting the intersection 
points of the families of curves associated with Q10(z
s(x,y)=0 and h(x,y)=k for k

deformed ellipse for k k k = 0.5 and k = 1 whereas the 
intersection points lie on two straight lines passing through the origin 
for k = 0. Similarly, for k =±0.0001, some of the intersection points 
(16 points) of the families of curves are shown to lie on a slightly 
deformed ellipse, while other points (4 points) can be seen to lie on 
a different ellipse or two straight lines passing through the origin. 
This result may suggest that intersection points are likely to lie on an 
ellipse or a slightly deformed ellipse when the absolute value of k is 

zm (P3 0) for 
any m
may lie on different ellipses or deformed ellipses.

0 =I 1 2 3 
together form a basis for M2( ). Therefore, any matrix H M2( ) can 
be expressed as a linear combination of these matrices given by
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                                              1.1

where, 1 2 3), and   
3 and h

R
, hI

3. The characteristic 
polynomial of H and its roots, respectively, are given by

                                                                          1.2

                                                                                             1.3
here h  h  =  hR hR I hI + 2ihR hI

If a Hamiltonian H H, PT
= 0, where P represents the parity operator and T is the time-reversal 
operator. For any 2 ( H,PT

9. Therefor 
H M2( ) is PT-symmetric if 

and only if = 0 and hR hI =09.

18: Let A0, A1, .. ,An  p×p

complex entries, and suppose that An
p x p, such that

P(z) = zn An+z  A  + .. + zA1+A0                                                                   1.4

is a matrix polynomial of degree n. The matrix polynomial P(z) is a p 
× p matrix for which each entry is a polynomial in z of degree at most 
n. A complex number z0 is said to be the zero of the matrix polynomial 
P(z) if P(z0 n is non-singular, 
then the determinant of P(z) denoted by det[P(z)] is a polynomial of 
degree np. Thus a matrix polynomial P of degree n and det(An)
np zeros18.

2) PT-Symmetry and Matrix Polynomials Formed by Pauli 
Matrices

In this section, we will analyse the matrix polynomials of the form

                                                                                        2.1
for the cases n = 1,2,3 where n is the degree of the matrix polynomial, 

0 j, ( j = 1,2,3) are the Pauli matrices. We 
also study the matrix polynomials constructed by permuting the 
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Pn(z), which is denoted by Pn(z). These matrix 
polynomials are not PT-symmetric in general. So we are interested in 

z   where the matrix polynomial exhibits PT-symmetry. 
Since all 2×2 PT-symmetric matrices are also pseudo hermitian5, at 
the points where the matrix polynomials are PT-symmetric, it is also 
Pseudo Hermitian. For the following discussions, we introduce two 
functions, s(x,y) and h(x,y), to characterize the nature of PT-symmetry 
of a matrix polynomial. The functions are given by

s(x,y) =hR I                  (2.2)

h(x,y) =hR R I I                      (2.3)

where hR and hI are the vectors associated with the matrix polynomial 

of a 2×2 matrix polynomial can be expressed as

           (2.4)
where  and  are functions of x and y. For any 2×2 matrix 
polynomial, the determinant is a polynomial in z, and there exists at 
least one z = (x,y)   such that the determinant becomes real. Hence 
if the trace of a matrix polynomial is real, it exhibits PT-symmetry at 
least one point in the complex plane. More precisely, if the trace of a 
2×2 matrix polynomial is real, then the matrix polynomial exhibits 
PT-symmetry at all z = (x,y)   where s(x,y) = 0, where its eigenvalues 
are given by E = . In addition, at those points where h(x, 

, the matrix polynomial has real eigenvalues given by 
E =  (unbroken PT-symmetry). Similarly, at those points 
where h(x, y) = k : k < 0, the matrix polynomial has complex pairs 
of eigenvalues given by E =  (broken PT-symmetry). 
If the trace of a 2×2 matrix polynomial is not real, then the matrix 
polynomial exhibits PT-symmetry at all z = (x,y)   where s(x,y) = 
0 and the imaginary part of the trace becomes zero, i.e. when = 0. 

complex plane where the matrix polynomial possesses PT-symmetry.
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2.1. PT-Symmetry in Matrix Polynomials of Degree 1

1. Consider the matrix polynomials of degree-1, given by

            (2.5)

The matrix polynomial P1(z) is generally not PT-symmetric. Since 
the trace of P1(z) is real, the PT-symmetric nature of P1(z) can be  
characterized by the functions given by

 s(x, y) = xy                  (2.6)

      h(x, y) = x2 y2                (2.7)

P1(z) is given by

P1(z) z2 h(x, y) – i2s(x, y)              (2.8)

The matrix polynomial P1(z) is PT-symmetric at all points in the 
s(x,y) = 0. The points in the 

complex plane where the families of curves s(x,y) = 0 and h(x,y) = k : k 
> 0 intersect are along the x-axis, whereas the points where the curves 
s(x,y) = 0 and h(x,y) = k : k < 0 intersect are along the y-axis. For a given 

h(x,y) = k and s(x,y) = 0 intersect at two points, and 

Fig-1-(a) and Fig-1-(c). When k = 0, the curves intersect at the origin, 
as shown in Fig-1-(b). Thus corresponding to the points on the x-axis 
P1(z) becomes a symmetric matrix and has real eigenvalues given by 
E = 1 ± x and corresponding to the points on the y-axis P1(z) becomes 

P1(z
†P1(z) = P1(z P1(z

†
0

P1(z
and has complex conjugate pairs of eigenvalues given by E = 1±iy. 
The points (±1,0), where the curves s(x,y) = 0 and h(x,y) = 1 intersect 
(as shown in Fig-1-(c)), are the zeros of the matrix polynomials. The 
matrix polynomial exhibits unbroken PT-symmetry at the zeros.

P1(z P1(z P1 z P1(z
the determinant has conjugate symmetry and even properties. Hence, 
the points where curves s(x,y) = 0 and h(x,y) = k intersect for a given k 
will be symmetric about the x-axis or about the origin.



36

ISSN 0975-3303 Mapana - Journal of Sciences, Vol. 23, No.4

FIG. 1. Intersections of the families of curves s(x,y) = xy = 0 (Yellow) and 
h(x,y) = x2 y2 = k (Blue) for the cases: (a) k k = 0, (c) k = 1

2) Now consider the matrix polynomial of degree 1, constructed by 
P1(z), given by

                  (2.9)
The trace of   is not real. In this case, the functions s(x,y) 
and h(x,y) are constant functions and always have the values 0 and 1 
respectively. Hence,  becomes PT-symmetric when the trace of 
the matrix polynomial becomes real, i.e., along the x-axis where  
is a symmetric matrix and has unbroken PT-symmetry with real 
eigenvalues E = x ± 1. The zeros of  coincide with the zeros of 
P1(z) i.e., the points (±1, 0), where  has unbroken PT-symmetry.

2.2. PT-Symmetry in Matrix Polynomials of Degree 2

1) Consider the matrix polynomial of degree 2 given by

              (2.10)
The determinant of P2(z) is given by

P2(z z2 z4 h(x,y) i2s(x,y)           (2.11)

The matrix polynomial P2(z) is generally not PT-symmetric. The 
functions s(x, y) and h(x, y) associated with the matrix polynomial are 
given by
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s(x,y) = xy + 2xy(x2 2)            (2.12)

h(x,y) = x2+(x2 y2)2 y2+4x2y2)            (2.13)

The trace of the matrix polynomial P2(z) is real. Hence, the set of 
points in the complex plane for which P2(z) can be PT symmetric is 
the same as the set of points where s(x,y) = 0. For a given k, there are 
four points in the complex plane where the families of curves s(x,y) 
= 0 and h(x,y) = k of P2(z) intersect or the matrix polynomial exhibits 
PT-symmetry, except for the value of k =0 and k k =0, there 
are three points where the families of curves s(x,y)=0 and h(x,y)=k 
intersect or P2(z) exhibits PT-symmetry, and all three points lie on 
the y-axis, as shown in Fig-2-b. The intersections of the curves s(x,y) 
= 0 and h(x,y) = k for k

the curves s(x,y) = 0 and h(x,y) = 1 as shown in Fig-2-(c). At the zeros 
of the matrix polynomial, P2(z) has unbroken PT-symmetry and has 
eigenvalues E = 0, 2.

FIG. 2. Intersections of the families of curves s(x,y) = xy+2xy(x2 2) = 0 
(Yellow) and h(x,y) = x2+(x2 2)2 2+4x2y2) = k (Blue) for the cases: (a) k = 

, (b) k = 0, (c) k = 1

At all points on the x-axis, P2(z) is Hermitian (unbroken PT-symmetry) 
with eigenvalues E = 1±x ; at all other points, P2(z) is non-

on the y-axis where |y| < 1 and |y h(x,y) < 0 and hence P2(z) 
must have broken PT-symmetry with eigenvalues E =1 ± iy  
and for all points on the y-axis where |y| > 1, h(x,y) > 0 and therefore 
exhibit Unbroken PT-symmetry with eigenvalue E = 1 ± y . 
For a given value of k
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x or y axis, as shown in Fig-3-(a) (for the range of ). 
When k = -0.25, we get the least number of points where the families 
of curves intersect, and these two points lie on the y-axis, as shown 
in Fig-3-(b). For a given , all 4 points lie on the y-axis, as 
shown in Fig-3-(c) (for the range of ).

Fig. 3. Intersections of the families of curves s(x,y) = xy+2xy(x2 y2) = 0 
(Yellow) and h(x,y) = x2+(x2 y2)2 y2+4x2y2) = k

k k k

P2(z
P2(z P2( z

P2(z s(x,y) = 0 and h(x,y) 
= k can lie on an ellipse or hyperbola or two straight lines passing 
through the origin or along a straight line. For a given value k < , 
the curves have no intersection on the x or y-axis. Therefore, four 
intersection points can be seen lying on a circle because of conjugate 

0) is a solution, then the other three solutions must be {(-x, -y), (-x, y), 
(x, -y)}. Thus, when k < , all solutions must lie on a circle and at 
all points on the circle, P2(z) has broken PT-symmetry.

For example by solving for the four points (x,y) satisfying s(x,y) = 0 
and h(x,y)  where 
x =  and y = . All these points lie on the unit circle, as shown in Fig-
4-a. These points can also be seen as lying on an ellipse, a hyperbola, 
or two straight lines passing through the origin. If a solution lies 
on the y-axis, then the conjugate property or even property of the 
determinant function guarantees one more solution symmetric to 
the x-axis. If a solution lies on the x-axis, then even property of the 
determinant function guarantees one more solution symmetric to 
the y-axis. Thus, if the curves intersect on the x-axis or y-axis, the 
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remaining solutions need not lie on a circle. This is what happens 
for a given value of k > 0; out of the four points where the families of 
curves s(x,y) = 0 and h(x,y) = k intersect, two points lie on the x-axis 
and the other two on the y-axis symmetrically, these points can be 
seen as lying on an ellipse. At all these points on the ellipse P2(z) has 
unbroken PT-symmetry.

For example, by solving for the four points {(x,y)} satisfying s(x,y) = 0 
and h(x,y) = 1 we get the points: {(0,y1 y1), (x2 x2,0)}, where 
y1 = 1.27202, x2 = 0.786151. All these points lie on the ellipse with the 

y1 and the length of the semi-
x2, as shown in Fig-4-b.

Fig. 4. Intersections of the families of curves s(x,y) = xy+2xy(x2 y2) = 0 
(Yellow) and h(x,y) = x2+(x2 y2)2 y2+4x2y2) = k (Blue) for the cases: (a) k = 

k = 1

From the above discussion, we have the following realization about 
the matrix polynomial P2(z). Along all points on the x-axis, P2(z) is 
hermitian and has unbroken PT-symmetry. Along all points on the 
y-axis where |y| < 1 and |y P2(z) has broken PT-symmetry and 
for all points where |y| > 1, P2(z) has Unbroken PT-symmetry. For 
a given k > 0, the intersection points of the families of curves s(x,y) = 
0 and h(x,y) = k lie on an ellipse. For  given k
points of the families of curves lie on the y-axis. Finally, for all k < 

0.25, intersection points of the families of curves lie on a circle.
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3) Now consider the matrix polynomial of degree 2, constructed by 
P2(z), given by

          (2.14)
The determinant of  is given by

z2 z4 x2 y2 h(x,y)+i2(xy s(x,y))                 (2.15)

The trace of  = 2z is complex and the functions s(x, y) and h(x, y) 
associated with the matrix polynomial are given by

s(x, y) = 2xy(x2 y2)              (2.16)

h(x, y) = (x2 y2)2 x2y2                (2.17)

The matrix polynomial  exhibits PT-symmetry when the trace 
becomes real i.e., y = 0 and s (x, y) = 0. Hence,  possesses PT-
symmetry only along the x-axis, where it becomes Hermitian and 
has unbroken PT-symmetry with eigenvalues E = . The 

curves given by

 = 0 and               (2.18)

x2 y2 h(x,y) = 0                (2.19)

respectively. At the four zeros of the matrix polynomial,  is not 

have no intersection on the x-axis as shown in the Fig-5.
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Fig. 5. Zeros of 
xy xy(x2 y2) = 0 (Yellow) and x2 y2 x2 y2)2 x2y2) = 0 (Blue)

In this case, for a given , the families of curves h(x, y) = k and s(x, y) = 
0 intersect at four points such that when k < 1, there are no intersection 

symmetry and when k > 1, two intersection points are on the x-axis 
symmetrically as shown in Fig-6-(c). When k = 1, the curves intersect 
at one point (origin), as shown in Fig-6-(b). Thus, when the trace of a 
matrix polynomial is not real in general, the additional constraint on 
points in the complex plane where the trace of the matrix polynomial 
is real reduces the number of points where it can be PT-symmetric.

Fig. 6. Intersections of the families of curves s(x, y) = 2xy(x2 y2) = 0 (Yellow) 
and h(x, y) = (x2 y2 x2y2 = 0 (Blue), for the cases: (a) k = 0, (b) k = 1,(c) 

k = 2
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2.3. PT-Symmetry in Matrix Polynomials of Degree 3

Consider the matrix polynomial of degree-3 given by

           (2.20)
The determinant of P3(z) is given by

P3(z) z2 z4 z6 h(x,y) i2s(x,y)          (2.21)

The matrix polynomial P3(z) is not PT-symmetric for all z values. The 
functions s(x,y) and h(x,y) associated with the matrix polynomials are 
given by

s(x,y) = xy+2xy(x2 2)+(x3 2)(3x2 3)           (2.22)

h(x,y) = x6 2+y4 6+x4 2)+x2 2 4)          (2.23)

The trace of matrix polynomial P3(z) is real, and hence it is PT-
symmetric at all points where s(x, y) = 0. The six zeros of the matrix 

s(x, y) = 
0 and h(x, y) = 1, as  shown in Fig-7-a; at these points, the matrix 
polynomial has unbroken PT-symmetry with eigenvalues E = 0, 2. 
At all points on the x-axis P3(z) is Hermitian, and at all other points, 
P3(z) is non-hermitian and non-normal. There are, at most, six points 
where the curves s(x, y) = 0) and h(x, y)=k : k  , for a given k intersect. 
When k

h(x, y) = k merge at the origin, as shown in Fig-7-b, leading to 
the least number of points where P3(z) has PT-symmetry for a given 
k. Thus when k = 0 there are 5 points where s(x,y) = 0 and h(x,y) = k 
intersect. The number of points where P3(z) is PT-symmetric is six 
except at k = 0.

Fig. 7. Intersections of the families of curves s(x,y) = xy+2xy(x2 y2)+(x3 xy2)
(3x2y y3) = 0 (Yellow) and h(x,y) = x6 y2 +y4 y6+x4 y2)+x2 y2+15y4) = 
0 (Blue), for the cases: (a) k = 1, (b) k = 0, (c) k



43

Abraham and Bhagwat PT-Symmetry in 2×2 Matrix Polynomials

P3(z
P3(z 3( z

s(x, y) = 0 and h(x, y) = k, for a given 
k, could lie on an ellipse or hyperbola or two straight lines passing 
through the origin or along a straight line. If there exists one solution 
(x  0,y  0), then there must exist three other solutions given by 
{( x, y), ( x, y), (x, y)}. Further, the remaining two solutions must lie 
on the x-axis or y-axis due to conjugate symmetry and even properties 

P3(z
0 and h(x, y) = k for k = 0 lie on two lines passing through the origin 
since one intersection point lies on the origin and the remaining four 
points are not on x-axis or y-axis. For a given value of k in the range 
0<k max, where kmax =0.347(approximately), four intersection points 
are given by {(x1,y1), ( x1, y1), ( x1,y1), (x1, y1) : x1 y1 0} and the 
remaining two intersection points are given by {(x2,0), ( x2 0,}, 
where |x2| < |x1|. Since |x2| < |x1|, these points lie on a hyperbola 
together. when the given value of k > kmax, four intersection points 
are given by {(x1,y1), ( x1, y1), ( x1,y1), (x1, y1) : x1 y1

the remaining two intersection points are given by {(x2, 0), ( x2, 0), : 
x  0,}, where |x2| > |x1|. Since |x2| > |x1|, these points lie on an 
ellipse together. Similarly, for a given value of kmin k < 0, where kmin = 

0.411(approximately) the six intersection points lie on a hyperbola, 
and for a given k < kmin, the six intersection points lie on an ellipse. 
Thus, for a given kmin k kmax : k
hyperbola; otherwise, they lie on an ellipse.

For example, the transition from intersection points lying on a 
hyperbola to those on an ellipse around xmin and xmax can be realized 

x 
and y, where s(x, y) and h(x, y)
respectively.

Examples

1) s(x, y) = 0, h(x, y)
solutions given by {(x1,y1), (x1 y1 x1,y1 x1 y1), (0,y2

y2)}, where x1 = 0.565899, y1 = 0.739613 and y2 = 0.739209.
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 These points can lie on the hyperbola:  with b = y2. Since 
b < y1, these points cannot lie on an ellipse.

2 = 

2) s(x, y) = 0, h(x, y) = 
solutions given by {(x1, y1), (x1, y1), ( x1, y1), ( x1, y1), (0, y2), (0, 

y2)}, where x1 = 0.566204, y1 = 0.739425 and y2 = 0.74005.

 These points can lie on the ellipse: with b = y2. Since y1
 

< b, these points cannot lie on a hyperbola. The value of a can be 
 .

3) s(x, y) = 0, h(x, y)
solutions given by {(x1,y1), (x1, y1), ( x1,y1), ( x1, y1), (x2,0), (x2,0)},

 where x1 = 0.51107, y1 = 0.94431 and x2 = 0.510938.

 These points can lie on the hyperbola:  with a = x2, these 
points cannot lie on an ellipse. The value of b can be found by 

.

4) s(x, y) = 0, h(x, y)
solutions given by {(x1, y1), (x1, y1), ( x1, y1), ( x1, y1), (x2, 0), (x2, 
0)}, where x1 = 0.511115, y1 = 0.944488 and x2 = 0.511504.

 These points can lie on the ellipse:  with . Since 
these points cannot lie on a hyperbola.

 .

The contour plots of s(x, y) = 0 and h(x, y) = k k s(x, 
y) = 0 and h(x, y) = k k
respectively.
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Fig. 8. Intersections of the families of curves s(x,y) = xy+2xy(x2 
y2)+(x3 xy2)(3x2y y3) = 0 (Yellow) and h(x,y) = x6 y2 +y4

y6+x4 y2)+x2 y2+15y4) = k k
k

The Intersections of the families of curves, s(x, y) = 0 and h(x, y) = k for 
k
lying on an ellipse with semi-major axis along the y-axis  (a 
= 0.737353, b = 1.52), hyperbola intersecting the x-axis  (a = 
0.409047, b=1.05958), two straight lines passing through the origin y 
= , a hyperbola intersecting the y-axis -  (a = 0.4042, b = 
0.49544), and the unit circle are shown in Fig. 9.

Fig. 9. Intersections of the families of curves s(x, y) = xy+2xy(x2 
2) + (x3 2)(3x2 3) = 0 (Yellow) and h(x,y) = x6 2 +y4

y6+x4 2)+x2 2 4) = k (Blue), for the cases: (a) k = 1, (b)k = 0.2, (c) k 

From the above discussion, we have the following conclusions about 
the matrix polynomial P3(z). Along all points on the x axis, P3(z), is 
Hermitian and has unbroken PT-symmetry, and along all points 
on the y-axis, it has broken Pt-symmetry. Further, for a given k, the 

s(x, y) = 0 and h(x, y) = k or, in other words, 
the intersection points of the families of curves s(x, y) = 0 and h(x, y) = 
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k are found to lie on a hyperbola when k is in the range kmin k max, 
where the approximate values obtained are given by kmin = 0.411 
and kmax = 0.347. When a given k < kmin and k > kmax, the intersection 
points lie on an ellipse, and when k = 0, intersection points lie on 
two straight lines passing through the origin. Also, for a given k, the 

s(x, y) = 0 and h(x, y) = k or the intersection 

hyperbola that intersects x-axis then at these intersection points P3(z) 
exhibits unbroken PT-symmetry and if the intersection points lie on a 
hyperbola that intersects the y-axis, then at these points, P3(z) exhibits 
broken PT-symmetry.

1) Now consider the matrix polynomial of degree-3, constructed by 
P3(z) given by

               (2.24)

The determinant of  is given by

z2-z4-z6-1= x2-y2-h(x,y)+2i(xy-s(x,y))           (2.25)

The trace of matrix polynomial =2z is not real, which puts 
additional restriction on the points in the complex plane where 
the matrix polynomial can be PT-symmetric other than where s(x, 
y) = 0. The functions s(x, y) and h(x, y) associated with the matrix 
polynomials are given by

s(x, y) = 2xy(x2-y2) + (x3-3xy2)(3x2y – y3)           (2.26)

h(x, y) = 1+x6+y4 y6+x4(1 15y2)+3x2y2( 2+5y2)             (2.27)

The matrix polynomial  is PT-symmetric at the points where y = 
0 and s(x, y) = 0, that is, along the x-axis. Thus, when  becomes 
PT-symmetric, it necessarily needs to be Hermitian. The six zeros of 
the matrix polynomials are shown in Fig-10, where x2 2  = 
0 and xy s(x,y) = 0. In the case of , none of the zeros are on the 
x-axis; hence, at the zeros of the matrix polynomial, PT-symmetry 
cannot be observed.
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Fig. 10. Zeros of  as intersections of the families of curves  = 0 
(Yellow) and x2 2  = 0 (Blue)

When the values of k < 1, the function h(x, y) = k have no intersection 
on the x axis as shown in Fig-11-(a) (for 0 < k < 1) and hence ,  
shows no PT-symmetry when k < 1. The curve h(x, y) = k intersects at 
one point on the x-axis (origin) when k = 1 as shown in Fig-11-(b), and 
it intersects at two points on the x-axis symmetrically, when k
shown in Fig-11-(c) (for k=2)

Fig. 11. Intersections of the families of curves s(x,y) = 2xy(x2 y2)+(x3 xy2)
(3x2y 3) = 0 (Yellow) and h(x,y) = 1+x6 +y4 y6 + x4 y2)+3x2y2 y2) = 

k (Blue), for the cases: (a) 0 < k < 1, (b)k = 1, (c) k = 2

2.3.1. Solutions of s(x, y) = 0 and h(x, y) = ±k : k > 0, for very 
large value of k

In the case of the matrix polynomials P3(z), we examine the solutions 
s(x, y) = 0 and h(x, y) = ±k, for very large value of k = 

1017.
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When h(x, y) = k =1017

{(x1,y1), (x1, y1), ( x1,y1), ( x1, y1), (x2,0), (x2,0)} where x1 = 340.646, y1 
= 590.016, and x2 = 681.292. At all these points, the matrix polynomial 
has the eigenvalues given by E = 1±

When h(x, y)=k= 1017

{(y1,x1), (y1, x1), ( y1,x1), ( y1, x1), (0,x2), (0,x2)}.

At all these points, the matrix polynomial has the eigenvalues given 
by E = 1± i  .

The above results suggest that for very large values of k of order 1017, 
the Solutions of s(x, y) = 0 and h(x, y) = ±k : k > 0,
property across the line y = x. That is, by knowing the solutions {(x, 
y k : k > 0 , the solutions of 

s(x, y) = 0 and h(x, y) = k : k > 0 can be obtained as {(y, 
x)}. Thus, if one set of solutions lies on the ellipses: , then the 
other set of solutions lies on the ellipse  for h(x,y) = k and h(x, 
y) = -k respectively. Similar result has been observed for the case  
also, for very large value of k = 1017. Since  exhibits PT-symmetry 
only for h(x, y) = k; k
symmetry cannot be observed for k = 1017.

2.4. PT-Symmetry in matrix polynomial of degree 10

Now we consider a matrix polynomial of degree-10, of the form zm 
(P3(z 0) for m = 7 given by

          (2.28)
The determinant of Q10(z) is given by

Q10(z)] = -(z16 + z18 + z20) = -(h(x, y) + i2s(x, y))                             (2.29)

The matrix polynomial Q10(z) is not PT-symmetric for all z values. The 
functions s(x, y) and h(x, y) associated with the matrix polynomials 
are given by.

s(x, y) = (8x7y y3 3y 8xy7)(x8 28x6y2+70x4y4 28x2y6+y8)

+(x9 36x7y2+126x5y4 84x3y6+9xy8) (9x8y 84x6y3+126x4y5 36x2y7+y9)
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+(10x9y 120x7y3 + 252x5y5 x3y7 + 10xy9) (x10 x8y2 + 210x6y4 - 

210x4y6 + 45x2y8 y10)

h(x,y) = x20+x18(1 190y2)+x2y14( 120+153y2 190y4)+y16(1 y2+y4)

286x10y6(28 153y2+646y4) 60x14y2(2 51y2+646y4)

+5x4y12(364 612y2+969y4) + 78x8y8(165 561y2+1615y4)

+26x12y4(70 714y2+4845y4) + x16(1 153y2+4845y4)

4x6y10(2002 4641y2+9690y4).            (2.30)

Since Q10(z) is traceless, it is PT-symmetric at all points where s(x, y) 
= 0. The family of curves s(x, y) = 0 and h(x, y) = k : k
20 points and when k = 0 intersection points are reduced to 5. The 
eigenvalues of the matrix polynomial at the intersection points are 
given by E = ±  and E =  , for k > 0 and K < 0, respectively. 

as shown in Fig-12-(a) (for k k 
= 0, the curves intersect at the points given by {(

), (0,0)}: where x=  and y=  as shown in Fig-12-(b).

Around the value of |k| = 0.5, all the intersection points are observed 
to lie on a slightly deformed ellipse, as shown in Fig-13-(a) (for k=-
0.5) and Fig-13-(b)(for k=0.5). As the value of |k| approaches zero, 
the intersection points are observed to not lie on a single ellipse or a 
single deformed ellipse; instead, 4 points lie on one ellipse, and the 
remaining 16 points are shown to lie on another deformed ellipse, as 
shown in Fig-13-(c) (for k=-0.0001) and Fig-13-(d) (for k=0.0001). This 
structure continues until k = 0, and when k
points lie on two straight lines passing through the origin.

Fig. 12. Intersections of the families of curves s(x, y)(Yellow) and h(x, y) = 
k(Blue), of Q10(z) for the cases: (a) k k = 0 (c) k = 1
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Fig. 13. Intersections of the families of curves s(x, y)(Yellow) and h(x, y) = k 
(Blue), of Q10(z) for the cases: (a) k k = 0.5, (c) k k = 

0.0001

This result may suggest that for matrix polynomial of the form zm 
(P3 0), all the intersection points are likely to lie on an ellipse or a 
slightly deformed ellipse when the absolute value of k
large (i.e., not close to zero) for any m
of k, the intersection points are likely to lie on different ellipses or 
deformed ellipses.

3. Summary

2×2 matrix polynomials of the form Pn(z) =  for n = 1, 2, 3 are 
examined for their PT-symmetric nature in the complex plane. The 
points where such matrix polynomials exhibit broken PT-symmetry 
and unbroken PT-symmetry are analyzed. It is demonstrated that 

lines passing through the origin or straight lines. 

Furthermore, the matrix polynomial P3(z), for a given k:k > 0 and 

to 1±
The matrix polynomial Pn(z) for the cases n = 1, 2, 3 is found to have 
unbroken PT-symmetry at all of their zeros.

Matrix polynomial 
matrices of Pn(z) for n = 1, 2, 3 and are found to not possess PT-
symmetry at the zeros of the matrix polynomials except for n = 1. 
A matrix polynomial of degree 10 of the form zm (P3(z) 0) is also 
examined, leading to the speculation that the points where it can 
have eigenvalues ±  or ±
lie on an ellipse or a slightly deformed ellipse for any . When the 



51

Abraham and Bhagwat PT-Symmetry in 2×2 Matrix Polynomials

value of k is close to zero, the points may lie on different ellipses or 
deformed ellipses.
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