
Mapana J Sci, 14, 3 (2015), 23-42 
 ISSN 0975-3303|doi:10.12723/mjs.34.2 

Received: April 2015. Reviewed: June 2015                                                   23 

 

Effects of Suction–Injection–Combination 

(SIC) on the onset of Rayleigh–Bénard 

Electroconvection in a Micropolar Fluid 

S Pranesh*, Sameena Tarannum† and Riya Baby‡ 

Abstract 

The effect of Suction – injection combination on the onset 
of Rayleigh – Bénard electroconvection micropolar fluid is 
investigated by making a linear stability analysis. The 
Rayleigh-Ritz technique is used to obtain the eigenvalues 
for different velocity and temperature boundary 
combinations. The influence of various parameters on the 
onset of convection has been analysed. It is found that the 
effect of Prandtl number on the stability of the system is 
dependent on the SIC being pro-gravity or anti-gravity. A 
similar Pe-sensitivity is found in respect of the critical 
wave number. It is observed that the fluid layer with 
suspended particles heated from below is more stable 
compared to the classical fluid layer without suspended 
particles.  
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1.   Introduction 

 

Convection in Eringen‟s micropolar fluid has been the subject of 
intensive study because of the remarkable physical properties of 
the fluid as well as its practical applications (see Power [1], 
Lukasazewicz [2] and Eringen [3]). The Rayleigh–Bénard 
convection in Eringen‟s micropolar fluid [4] have been studied by 
many of authors (Datta and Sastry [5], Ahmadi [6], Bhattacharya 
and Jena [7], Siddheshwar and Pranesh [8–11], Pranesh and Riya 
Baby [12] and Pranesh and Arun Kumar [13]). 

The classical Rayleigh problem of onset of convection instabilities 
in a horizontal layer of fluid heated from below has its origin in the 
experimental observations of Bénard [14]. In the standard classical 
problem there is no flow across the horizontal boundaries. A 
modified problem, where the boundaries are permeable and there 
is injection of fluid at one boundary and suction of fluid at the 
other boundary, was studied by Sharvartsblat [15]. He pointed out, 
that the problem is of interest because of possibilities of controlling 
the convection instability by adjusting of SIC. The effect of SIC is in 
general quit complex because not only the basic temperature 
profile is altered, but in the perturbation equations contribution 
arises from the convection of both temperature and velocity, and 
there is an interaction between Prandtl number comes into play. 
Nield [16] considered the classical problem for viscous fluid and 
studied analytically the effect of SIC on the onset of convection in a 
fluid layer between permeable horizontal boundaries. He gave a 
new theory for the destabilizing effects of SIC, when flow is from a 
dynamically rigid and thermally conducting boundary to a 
dynamically free and thermally insulating boundary. He also 
pointed that when Prandtl number is close to unity the amount of 
destabilization is small but this is not true when Prandtl number is 
either large or small. Many authors (Siddheshwar and Pranesh [17], 
Shivakumara and Suma [18], Murty and Ramana Rao [19] and 
Murty [20, 21]) have studied the effect of SIC on Newtonian and 
non–Newtonian fluid using classical Fourier law.    

The objective of this paper is to study the effect of suction–
injection–combination on the onset of Rayleigh–Bénard 
electroconvection in a micropolar fluid. 
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2. Mathematical Formulation 

Consider an infinite horizontal layer of a Boussinesquian, 
electrically conducting micropolar fluid of depth „d‟ permeated by 
an externally applied uniform magnetic field normal to the layer. A 
cartesian coordinate system is taken with origin in the lower 

boundary and z-axis vertically upwards. Let T be the temperature 
difference between the upper and lower boundaries (see Figure 
(1)). A constant flow in the vertical direction, known as SIC, is 
maintained at the boundaries.  

 

 

 

 

 

 

Fig 1:  Schematic diagram of the flow configuration. 

The governing equations for the Rayleigh–Bénard situation in a 
Boussinesquain micropolar fluid are: 

Continuity equation: 
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Conservation of energy: 
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Equation of state:    

)],TT(1[ oo 

                                               

                (5) 

Equation of state for dielectric constant: 

),TT(e)1( 0er                             (6) 

Faraday‟s law: 
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(7) 

Equation of polarisation field: 
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              (8) 

where, q


 is the velocity , 0  is density of the fluid at temperature T 

= T0, p is the pressure,   is the density, g


is acceleration due to 

gravity,   is coupling viscosity coefficient or vortex viscosity, P


 is 

dielectric polarization, E


 is the electric field,   and   are the bulk 

and shear spin-viscosity coefficients, 


 is the angular velocity, I is 

moment of inertia, '  and  '  are bulk and shear spin-viscosity 

coefficients, T is the temperature,   is the thermal conductivity,   
is micropolar heat conduction coefficient,   is coefficient of  
thermal expansion, determining how fast the density decreases 

with temperature,   is electrical conductivity, r  is the dielectric 

constant, e  is electric susceptibility, o  is the electric permittivity 

of free space and   is the electric scalar potential. 

3. Basic State 

The basic state of the fluid being quiescent is described by 

.
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where, 0w is the strength of the imposed constant suction (or 

injection) and k̂ is the unit vector in the z-direction. The pro-gravity 
SIC and anti-gravity SIC is shown schematically in figure (1). 
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Substituting equation (10) into basic governing equations (1)-(8), we 

obtain the quiescent state solutions as:  
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Solving equation for bT using the boundary conditions 
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We now superpose infinitesimal perturbations on the quiescent 
basic state and study the instability. 
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4. Linear Stability Analysis 

 

Let the basic state be disturbed by an infinitesimal thermal 

perturbation. We now have 
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The primes indicate that the quantities are infinitesimal 
perturbations and subscript „b‟ indicates basic state value. 

Substituting equation (12) into equations (1)–(8) and using the basic 
state equations (10), we get linearised equations governing the 
infinitesimal perturbations in the form: 
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Using equation (17) in (14), operating curl twice on the resulting 
equation, operating curl on equation (15) we get, 
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The perturbation equations (16), (20), (21) and (22) are non-
dimensionalised using the following definition: 
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Using equation (23) into equations (16), (20), (21) and (22) we get 
the dimensionless equations in the form (after neglecting the 
asterisks): 
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The non-dimensional parameters Pe,LPr,,N,N,N,N 5321  
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The infinitesimal perturbation  andT,,W
Z  

are assumed to be 

periodic waves (see Chandrasekhar [36]) and hence these permit a 
normal mode solution in the form 
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where l and m are horizontal components of the wave number 2a , 

Substituting equation (28) into equations (24)–(27), we get 
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Equations (26)–(29) are solved using the Galerkin technique. 
Multiplying equation (29) by W, equation (30) by G ,equation (31) 

by T, and equation (32) by  and integrating the resulting equation 

by parts with respect to z from 0 to 1 and taking W = AW1 , G = BG1 

, T = CT1 and 1E  in which A, B ,C and E are constants with 

W1, G1 , T1 and 1  are trial functions. This procedure yields the 

following equation for the Rayleigh number R: 
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where,  
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In the equation (33),  denotes integration with respect to z 

between 0z  and 1z  . We note here that R in equation (33) is a 

functional and the Euler–Lagrange equations for the extremisation 

of R are equations (29)–(32). 

The value of critical Rayleigh number depends on the boundaries. In 

this paper we consider the following boundary combinations: 

Free–free isothermal and no spin. 

.1,0zat,0DGTWDW 2   

Rigid–rigid isothermal and no spin. 
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Rigid–free isothermal and no spin. 
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Free–free adiabatic and no spin. 
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(a) Rigid–rigid isothermal and no spin. 
.1,0zat,0DGDTDWW   



S Pranesh et al.                                Effects of Suction–Injection–Combination 

33 

 

(b) Rigid–free isothermal and no spin. 
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The trial functions satisfying the boundary conditions are presents in 

Table 1. 
 

Table 1: Trial functions for the different for the different boundary 
conditions. 
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5. Results and Discussion 

In this chapter, we study the effects of suction-injection-
combination and electric field on the onset of Rayleigh-Bénard 
convection in a micropolar fluid.  

Before discussing the results obtained in this paper, the following 
observations are made from the equation (33).  In the case of 
symmetric boundaries (free-free and rigid – rigid) the value of Rc is 
same for both pro and anti-gravity suction-injection-combinations 
as Rc is an even function of Pe and in the case of non-symmetric 
boundary combination (rigid – free) Rc is not an even function, thus 

the value of Rc is not the same for both 0Pe  and 0Pe   even in 
the absence of magnetic field.   

The critical Rayleigh number Rc obtained using Galerkin method 
for different values of N1, N3, N5, L, and Pr  are shown in figures (3) 
– (14). Figures (3) – (8) pertain to different velocity boundary 
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combination and isothermal temperature boundaries and figures 
(9) – (14) pertain to adiabatic temperature boundaries. 

Figure (3) is the plot of Rc versus Pe for different values of coupling 
parameter, N1, and for different velocity boundary combinations 
with isothermal temperature conditions. It is found that Rc 
increases with the increase in N1. N1 represents the concentration of 
microelements in the fluid. When N1 increases concentration of the 
microelements are also increases, this microelelmetns consume 
greater part of the energy in forming the gyrational velocity, which 
delays the onset of convection. From this we conclude that increase 
in concentration of microelements stabilizes the system.  

Figure (4) are the plot of Rc versus Pe for different values of couple 
stress parameter, N3, for different velocity boundary combinations 
with isothermal temperature conditions. From the figure we 
observe that the increase in N3 decreases Rc. This is because, when 
N3 increases the couple stress of the fluid increases, which 
decreases the microrotation and thereby destabilizing the system.  

Figure (5) are the plot of  Rc versus Pe for different values of 
micropolar heat conduction parameter, N5, for different velocity 
boundary combinations with isothermal temperature conditions. 
Clearly, Rc increase with N5. When N5 increases, the heat induced 
into the fluid due to microelements also increases, thus reducing 
the heat transfer from bottom to top. The decrease in heat transfer 
is responsible for delaying the onset of instability. Thus, the effect 
of N5 is to stabilizes the system.  

Figure (6) are the plot of Rc versus Pe for different values of electric 
Rayleigh number, L, for different velocity boundary combinations 
with isothermal temperature conditions. It is found that as L 
increases, Rc decreases. Thus, L destabilizes the system.  

Figures (7) are the plot of  Rc versus Pe for different values of 
Prandtl number, Pr, for different velocity boundary combinations 
with isothermal temperature conditions. From the figure it 
observed that in the case of anti-gravity SIC increase in Pr, 
increases Rc, thus stabilizing the system. In the case of pro-gravity 
SIC we see that Rc decreases with an increase in Pr and thereby 
destabilizes the system. Thus in deciding stability of the system 
Prandtl number plays an important role. 
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Figures (8) – (12) are plots for adiabatic boundaries corresponding 
to figures (3) – (7) of isothermal boundaries. The results of adiabatic 
boundaries are qualitatively similar to that of isothermal 
boundaries.  

From the above figures the following points are noted:  

1) In the case of anti-gravity SIC, i.e., 0Pe  , increase in Pe 
decreases Rc initially (for small values of Pe up to a certain 
critical value of Pe namely Pec) and further increase in Pe 
beyond Pec increases the Rc. Thus the weak anti-gravity SIC 
in micropolar fluids destabilizes the system. This may be 
due to distortion of the basic temperature profile caused by 
SIC. Physically this amounts to an increase in the rate at 
which energy is supplied to the disturbance. In the case of 

pro-gravity SIC, i.e., 0Pe , increase in Pe increases Rc and 
thus the pro-gravity SIC makes the system stable. 

2) We also find that ,FF
cRRF

cRRR
cR   where the 

superscripts correspond to the three different velocity 
boundary combinations. Thus rigid-rigid boundary is more 
stable compared to other velocity boundary combinations.   

3) In the case of adiabatic boundary the convection sets in at 

wave number, .0ca   

4) 4) It is also observed from the table that 

RF
cPeFF

cPeRR
cPe  .  The  behavior of Pec in 

adiabatic case is quantitatively similar to that observed  in 
the case of isothermal boundaries.  

6. Conclusion 

It is found that the effect of SIC is to stabilize or destabilize 
accordingly SIC are Pro-gravity and anti-gravity. Thus, by 
adjusting the suction-injection-combination and Prandtl number, Pr 
it is possible to control the convection in a micropolar fluid with 
electric field. 
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Fig 2: Plot of Rayleigh number R versus Peclet number Pe for different values of coupling parameter 
N1 for different velocity boundary combinations and isothermal temperature condition. 
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Fig 3:  Plot of R versus Pe for different values of couple stress parameter N3 for different velocity 

boundary combinations and isothermal temperature condition. 
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Fig 4:  Plot of R versus Pe for different values of micropolar heat  conduction parameter N5 for 
different velocity boundary combinations and isothermal temperature condition. 
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Fig 5:  Plot of R versus Pe for different values of Prandtl number Pr for different velocity boundary 
combinations and isothermal temperature condition. 
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Fig 7: Plot of R versus Pe for different values of Electric Rayleigh number L for different velocity  

boundary combinations and adiabatic temperature condition. 

Fig 6:  Plot of R versus Pe for different values of Electric Rayleigh number L for different velocity 

boundary combinations and isothermal temperature condition. 
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Fig 8:  Plot of R versus Pe for different values of coupling parameter N1 for different velocity  

boundary combinations and adiabatic temperature condition. 

Fig 9: Plot of R versus Pe for different values of couple stress parameter N3 for different 
velocity boundary combinations and adiabatic temperature condition. 
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Fig 10:  Plot of R versus Pe for different values of micropolar heat conduction parameter N5 for 

different velocity boundary combinations and adiabatic temperature condition. 
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Fig 11:  Plot of R versus Pe for different values of Prandtl number Pr for different velocity boundary 
combinations and adiabatic temperature condition. 

 




