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Theoretical approach to study the electroclinic
effect very near to the Smectic C* -Smectic A*
transition point of FLC molecules
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Abstract

We propose a theoretical approach considering Landau type free
energy expansion in order to understand the electroclinic effect
appearing very close to the transition region between Smectic-C*
to Smectic-A* phases. A new secondary order parameter is
considered, and expressing it as the fluctuations of the applied
field very close to the transition point, the capacitive nature of
the system is addressed successfully at this very region. More
over we have been able to show that the modulated Smectic-C*
phase may be considered to be responsible for the origin of the
electroclinic behavior.
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1. Introduction

Chiral liquid crystals show very interesting physical phenomena near the
transition region [1]. Electroclinic effect is one of those phenomena, which
can be attributed in general to the chirality of the liquid crystal molecules.
There are several papers published [2-6] over the years to investigate this
phenomenon in detail. We wish to highlight a few of them to emphasize
the facts regarding the electroclinic effect. According to Meyer et al. [7],
the application of external field may produce some net molecular tilt in
the Smectic-A" phase with layer contractions, believed to be responsible for
the appearance of the electroclinic behavior of the Smectic phases. These
predictions are well equipped with strong experimental results [8,9]. Another
approach to the electroclinic behavior was suggested by de Vries et al. [10]
and according to them Smectic-A" phase initially contain some molecular
tilt without any azimuthal order but due to the application of external field
some azimuthal order may appear in the molecular environment without
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any layer contractions as suggested by the previous model. Meyer et al. [11]
again suggested an idea to incorporate the field induced molecular tilt in
Smectic-A* phase to describe the appearance of electroclinic effect very close
to the transition point between Smectic-C* and Smectic-A* phases. But they
proposed that the appearance of electroclinic effect in the Smectic-A* phase
may not be considered as Smectic-A" phase, but it could better be a modulated
Smectic-C* phase having no long-range azimuthal order in the absence of the
external field and microscopically originating from a kind of defects present
in the system. Thus it may closely resemble with the Smectic-A" phase. These
predictions were also strongly supported by experimental observations
[12]. In the present paper we extend these theoretical predictions more
strongly following the de Vries approach and the concept of the modulated
Smectic-C* phase i.e. disregarding the layer contractions and highlighting
the fact that very close to the transition point the external field indeed induces
some director tilt producing a net polarization in the medium from the
theoretical point of view. By introducing a new secondary order parameter,
displacement vector (D) instead of the polarization (P) of the medium, we
have tried to explore new physical observations very close to the transition
point as a result of appearance of the electroclinic effect. In this paper we
observed the existence of the de Vries Smectic A* phase and the modulated
Smectic-C* phase based on the same origin of electroclinic effect.

2. Theoretical approach and discussion

After the application of the significantly large electric field, the spatial
configuration of the director in the ferroelectric phase does not change
appreciably near the Smectic-C* to Smectic-A* transition point. Thus we can
neglect the elastic contribution and the flexoelectric contribution to the Gibbs
free energy in the vicinity of the transition point. Here we are considering
the classical Landau model [13] by expressing the Gibbs free energy
in terms of the primary order parameter 0 (tilt angle) and the secondary
order parameter P (spontaneous polarization) [14] and consider symmetry
arguments to understand the electroclinic behavior of FLC molecules as
proposed by Meyer et al. [15]. Again the de Vries type Smectic-A* phase,
which is assumed to have some reorientations of the molecules by rotations
around the Smectic cone with the electric field [16, 17] followed by some
experimental evidence [18]. Since the modulated Smectic-C* phase may
have some correlation with the ordinary Smectic-A* phase, we are trying
to show the resemblance between the modulated Smectic-C* phase and
the de Vries type Smectic-A* phase as discussed below. In the generalized
Landau model, the Gibbs free energy in the presence of an oscillatory field
(measuring field) of an unwound system (wave vector, q=0) for the SmC*-
SmA* transition can be written as:
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Here the parameters a, b, ¢, i, p, and A\ have the usual significance, and
w?= a(7-T,), where a is a constant and T, being the transition temperature.
The free energy quite evidently contains both the primary order parameter
(0) and the secondary order parameter (P) with some coupling between P
and the external field E. By visualizing the basic definition of the electric
displacement vector D=¢ E+P, the free energy expression now looks like the
following i.e.,

2 2 4
F=F+ta0+1p6* +Lco° + £ p +2p )
2 4 6 23 Y]

The free energy expression is now expressed in terms of 6 and the electric
displacement vector D in equation (2). Since D contains both the secondary
order parameter P and the external field E, we can now define a new
secondary order parameter D instead of P in view of the Landau free energy
expression (2). In this paper we have not only emphasized this fact but
also shown the informative nature of D instead of P and thus justifying the
introduction of D in our theoretical approach.

In consideration of all couplings the electroclinic free energy expression can
be written as:

F=F+ta0’ +Lpo’ + Lo’ +—L p>+Lyp —po—-Lape 3)
2 4 6 2% 4 2

Most importantly, we have considered here the coupling between
displacement current (D) and tilt angle (6) both in the bilinear and biquadratic
forms. y, and 1 absorb the terms p? and A for simplifying the mathematical
arguments. Therefore, to obtain a stable condition of the system the necessary
minimizations were done with respect to 6 and the new secondary order
parameter D (instead of P). From the minimization condition with respect to
D we obtain the following equation as given below:
or D

—=0="-06°D+nD’ —y0
oD Yo * #
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129



Mapana - Journal of Sciences, Vol. 24, No.3 ISSN 0975-3303

Putting the expression of equation (4) into equation (3) we have,

i 1 1 1 1
F=F +=a6’+=b0' +=c0° —=nD* —=yD@ 5
2 4 6 " 27 )

Minimizing equation (5) with respect to 6 we obtain

92b3£
e e d

6°=D (6)

The free energy now becomes

1 3 16na’

v
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)6'6 (7)

If we consider the second order phase transition from SmC-SmA’, then F (0)
can be expressed after transition as

*

F= F+E a0 += b&" ¢’ ®)

One important aspect for the Landau free energy expansion is that the 6°
term contributes to the free energy of the system when the parameter “b”
or “b*” is less than zero. This can be obtained mathematically by setting the
second order derivative of the free energy F with respect to 6 to be greater
than zero.

Now in equation (8) we have a'=a=a/(T-T), i.e. no shift of transition point
noticed. It was observed earlier by several research groups [19-21] that the
shift of transition depends on the thickness of samples or on the surface
anchoring energy. But after defining the new secondary order parameter, D
we did not observe theoretically any such shift. It does provide the fact that
we can define a transition point, D=0 and 0=0 instead of P=0 and 6=0. That
definition of transition point may be considered as unique point depending
on sample properties itself but not depending on the thickness alike the
other definition.

b* and c* are also the modified parameters for the free energy expression in

167704 961]54 3p
7

), *=0c+

equation (8), given by # =(3+""— ) Since very close to the
transition point 6—0, from equatlon (6), we have

6 =eD )

130



Biswas and Majumder Theoretical approach to study the electroclinic effect

_r Y
Where € 24 2a(T-T,) (10)
Here e is the electroclinic co-efficient, is the electroclinic coupling constant
and a(T-T)) is the first coefficient of the Landau free energy expansion with
a as the tilt elastic modulus parameter (non-chiral) describes the restoring
torque to return back the director to the layer normal. y is the chiral
parameter describes the coupling between D and 0 in the SmC* phase. The
linearity between D and 0 is broken when we move far from the transition
temperature T corresponding to the second order transition between SmC*-
SmA*. The linearity of D depends on the variation of temperature (which
is quite small in the vicinity of the transition point) and on the coupling
constant y as similar to the variation obtained for P [6, 22].

Considering equation (9), the free energy F can be expressed as given below:
2
F=F +iy'D +i/1'D4+iv’D6 (11)
0 2 o 6
Here p', M’ and v’ are the modified parameters governing the temperature

dependence and the transition mechanism close to the transition point.

Therefore, we can obtain those parameters depending on temperature as
given below:

2 4 2
5¢v0
ﬂ'=7—,/1'=(3b74+1) and v':(—c”6+’7by (12)
4a 64a® 4 384a®  4a3
Now from equation (11) we have
dr
—=E=,u’D+/”L'D3+V'D5 (13)
dD

The E represents the applied field including both oscillatory and bias field.

Considering a small fluctuation in the applied field close to the transition
point, we can express the electric displacement D using Taylor’s series
expansion in the following manner:

2
oD 10D 2
D(E+OE)=D(E)+——0E+——F(6E) +........... 14
( / (E) oF 2! oF (%) (14

In view of equation (13) the Landau-Khalatnikov classical equation of motion
for the electric displacement is given by the following equation:
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Faa—l;+y’l)+/1’D3+v'D5:E (15)

Here T represents the kinetic co-efficient of the molecules of the system
signifying the orientation mobility of its.

Comparing equations (14) and (15), we have

r%w'[)(E)MD%E)wD%E):E (16)

And rg—j+u's+3/1’D-’(E)e+5vD4(E)s:1 (17)

Considering D=D +D exp (iwt) and E=E, +E exp (iwt), where D, (D,) and E
(E,) are the magnitude of the oscillatory field (bias field) corresponding to D
and E, respectively.

By substituting those in equation (16) we obtain the following relations:
! ! 3 ) 5 .
HDy+ADY +vDy=E, (18)
. ' m2 '
And 1D jio+ u'D y+34DpD, +5vDiD, ~E, (19)

From (18) we obtain the bias dependent dielectric variation as given below:

Dy, bi
g(b):E_: ' m2 m4
p H+AD3+vDy

By approximation of p' to be very large
11 iry 2 m4
g(b):;—P[ﬂDb (E)+vDy (E)] (20)

Now from (19) we have,

1

u'+ 3Z'Dg + 5V’DZ +iwl”

g(w)= (21)

Equation (21) can be further simplified as,
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stated earlier. The relaxation time is given by 7 = —, .
U

Now in view of equation (20) we have

1
8'((0):&)2+5(00)and 5"(@):40” (22)
1+t 1+ @27

The new secondary order parameter D is absolutely crucial in defining the
behavior of the above curve. The electroclinic behavior is one, which involves
the external field inducing some net tilt (0) in the medium and the absence
of such an external bias would lead to no tilt (0) present in the system. It
is this behavior close to the transition point that assumes the system to be
identical with the ordinary Smectic-A* phase though it physically appears
in the modulated Smectic-C* phase as argued by Meyer et al. [11]. So
there should not be any zero field polarization present in the system in the
modulated Smectic-C* phase (as 0 is zero) but from Fig.1 we are getting a
non-zero value of & for D, =0 i.e. for zero bias field we have a very small
contribution of 7° to € as highlighted in the Fig. 1. This contribution to &'
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Figure 1: Variation of the real part of the dielectric permittivity (¢') with the external
bias (Db). The units are taken arbitrarily and show the induced polarization in
medium by the applied bias.
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though small but still significant to notice and as the field D, increases from
zero value €' also increases. Since the real part of the dielectric constant
defines the polarization mechanism of the system, the zero field value of
¢' as shown in the above curve predicts a non-zero value of polarization
present even in the modulated Smectic C* phase very close to the transition
point. But recent studies [18] have shown that the de Vries type Smectic-A*
phase does contain some initial orientational order with zero external field.
The experimentally found value of the polarization present in the system
is approximately 119 nC/cm? The correlation length corresponding to the
above polarization is of the order of nanometers, approximately 22-45nm.
In our case we have theoretically shown that there do exist some zero-field
orientational order even in the modulated Smectic-C* phase responsible for
the origin of the electroclinic behavior. This phenomenon is very interesting
and reflects a very important concept about the electroclinic effect and its
origin. The situation quite categorically predicts the fact that the modulated
Smectic-C* phase is not just any other ordinary Smectic-A* phase but it is
indeed identical with the de Vries concept of Smectic-A* phase very close
to the transition point as we can’t distinguish between these two phases
at this very juncture visualizing their same zero-field tilt present in the
system. So very close to the transition point our theory predicts a de Vries
type behavior of the modulated Smectic-C* phase though the modulation
(kind of defects, arrays, lines etc) is still present in the medium. Hence both
the modulated phase and the de Vries Smectic-A* phase are in the identical
resemblance and thus occupy the same footing as far as the theoretical
considerations regarding the electroclinic phenomenon is concerned. Now
these predictions are substantial when p' is significantly large (eq.19). If we
van
4a
only observed when “a” is very small in fact a—0 i.e.,, T>T  and y is very

observe the expression for p' i.e., p' = ~—we see that a large value of p’ is

large. a—0 means we are indeed minutely away from the transition point
and a very large value of y predicts a very strong coupling between D and
6 i.e. a strong electroclinic nature of the medium. So our theory validates
its predictions almost at the juncture of the transition point (may be some
nano-kelvin difference in temperature) and if we can manage to attain
such an experimental environment we would not be able to distinguish
between modulated Smectic-C* phase and the de Vries Smectic-A* phase.
The introduction of D plays an indispensable role in conceptualizing these
theoretical arguments and hence is worth introducing.
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Figure 2: Variation of the real part of the dielectric permittivity (¢') with frequency
(®). The units are taken arbitrarily.
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Figure 3: Variation of the imaginary part of the dielectric permittivity (¢") with
frequency (@). The units are taken arbitrarily.

Figs. 2 and 3 demonstrate the frequency dependency of the real (¢')
and the imaginary (¢") parts of the dielectric permittivity (e). The behavior is
the typical soft mode type relaxation for a Smectic C* liquid crystals [23]. €'
decreases with the increase of frequency (Fig. 2) because of negligible effect
of the dipolar polarizability at sufficiently high frequency due to the inertial
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response of the dipolar molecules towards a rapidly oscillating field. So at
high frequency the dipolar polarizability contributes a little and electronic
polarizability with substantially significant, corresponding to a rapidly
oscillating field contributes to ¢'. From Fig.3, at =1/t (t = I'/'.), the loss
factor of the system is maximum. If u' becomes very large, the randomization
of the molecules are greatly increased and if p' becomes very small, the
molecules of the system almost freeze themselves at their respective lattice
sites, thus contributing very little to the dielectric spectrum of the system.

By putting equation (14) to equation (13) and equating the coefficient
of (8E)2 we have

’ m3 D ﬂ 3_/1’ 2 5_‘/' 4 @
[3AD(E)+10vD’(E)] ¢ [2 = D“(E)+ s D (E)]aE (23)

The third bracketed term on the right-hand side of equation (23) is basically

OL a5 can be seen from the equation (13). So, equation (23) now modifies to

oD
the following equation i.e.

, 753 2__ 1,06 oF
[3AD(E)+10vD3(E)]e2 = 2(8E)(8D) o
_—LgE%
24D

Equation (24) now can be further modified to yield the following expression
ie.

oD 1 []+10v

"2
- D?(E
de 61 D(E) 31 (5l )

Now taking the expression of D as D= D + D, exp (iwt), equation (25) now
takes the following form i.e.

2,0D 1 Dy . ov' 2 5 . .
gé(—)=—- 1——%expiot)[1+—— (D35 + D7 expliwt+ 2D expimwt
(ag) 6/1,Db( D, piot)| 3/1,( pT Py exp Poexpiot)]

The above expression can now be further modified in the manner stated
below i.e.
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52(62)=§ (T,D)+& (T,D)expiot+E,(T,D )exp iot (26)
Be’ I 2 3

The left-hand side of equation (25) i.e. ;2 oD ) is basically the charge density
O¢

times the capacitance in the medium. The negative sign signifies the energy
flow for the system as it is subjected to the external field.

Here the coefficients of equation (26) are provided by the following
expressions i.e.

2

1 S5vDp Dy 10v'DpDg 5vDyg
I,D)=(-———-2Y2b) £ (7.D)= - & (T,D)=—

¢ 1.0 (== By (TD) (6/I’Di 330, VTP = =

Equation (26) is obtained by taking the co-efficient of (8E) 2. It provides an
idea about the capacitive nature of the molecular environment very close
to the transition point. The capacitance of a system provides us the energy
storage mechanism i.e. how the system stores the charges in the medium
for substantive amount of time. But if we see the expression (26) closely
and its co-efficients we can conclude that very close to the transition point
the system losses energy as the charges now flow out of the system in
due course. This is perfectly understandable as the right-hand side of the

equation (26) is &2( g—lj ) signifying the capacitive nature of the medium being

varying inversely with the charge density of the medium. As we increase
the applied field on the system very close to the transition point the energy
flux i.e. the energy flowing out of the system becomes appreciable. This is
reasonable because very close to the transition point the system becomes
very much constrained and in order to achieve a stable energetic situation it
undergoes a transition to another phase i.e. the Smectic-A* phase. So, when
the applied field is substantially large the system or the molecules as a whole
become quite strained in their orientational freedom. This situation further
aggravates if we assume that the arrays, lines and the defects in the medium
now are also in the conspicuous situation resulting in the enhancement of
the constrained nature of the system. Thus, the system releases the energy in
order to achieve a stable equilibrium i.e. the stored charges for a considerable
amount of time being released. For both zero and infinitely large value of
D, the energy flux diverges. For infinitely large value of D, very close to
the transition point the system no longer can follow Landau expression in
terms of as usual secondary order parameter P because of the fluctuations
in both of the applied field and the order parameters. Again, for zero value
of D, though there are some nanoscale orientational orders present in the
medium (as demonstrated regarding our discussion about Fig.1) but still it
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is found to be insufficient to bring the stability in the system. We have to
put some field of intermediate range in the system to make it stable at the
vicinity of the transition point and to achieve a strong electroclinic effect,
otherwise the system would continuously lose energy to achieve stability
by going over to the Smectic-A* phase. Since the dielectric constant and the
capacitance of a system show the similar behavior as obtained from equation
(26), hence the physical arguments regarding the real and the imaginary

parts of the expression &2( Z—D ) may be assumed similar physical scenarios
&
as demonstrated in the equations (19) and (20). We call the expression

£ L ) the response parameter since it reveals quite a lot about the physical
situations of the system when it is exposed to the external field and thus is
worth stating.

Conclusion

We have successfully obtained the behavior of modulated phases with the
consideration of newly defined order parameter. By defining a new order
parameter D we eventually obtained the dielectric function as a modulated
nature taking into consideration of infinitesimal fluctuation from equilibrium.
It definitely ascertains the existence of modulated Smectic-C* phase due to
the fluctuation of the system as a whole under the influence of an external
applied field. Besides we have been able to get an in-depth knowledge of
the capacitive nature of the system by considering the new order parameter.
We finally revealed several aspects such as response parameter from the
electroclinic behavior of a system based on our newly defined concept in
terms of newly defined order parameter.
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