

Chromatic Excellence in Graphs

Kulrekha Mudartha, * R. Sundareswaran** and V. Swaminathan***

Abstract

Excellence in graphs introduced by G.H. Fricke is extended to partitions of the vertex set with respect to a parameter. A graph G is said to be Chromatic excellent if $\{v\}$ appears in a chromatic partition of G for every $v \in V(G)$. This paper is devoted to the study of chromatic excellence in graphs.

Keywords: β_0 -excellent, Chromatic Excellence(χ -excellence), Excellence in Graphs, Chromatic just excellence, Chromatic Partition.

Introduction

G.H. Fricke et al [1] introduced the concept of excellence in graphs with respect to graph parameters. A graph is excellent with respect to a parameter λ (maximum or minimum), if every vertex of the graph belongs to a λ -set of the graph (a λ -set is a maximum/minimum subset of the vertex set with respect to the parameter λ). For example, if we consider the domination

* Ramanujan Research Centre in Mathematics, Saraswathi Narayanan College, Madurai; kmudartha@gmail.com

Received: March 2011; Revised: August 2011

53

^{**} Rajalakshmi Engineering College, Chennai; neyamsundar@yahoo.com ***Ramanujan Research Centre in Mathematics, Madurai, sulanesri@yahoo.com

parameter, then a graph is said to be domination excellent if every vertex belongs to a minimum domination set of a graph. This concept can be extended to partitions defined by parameters. E. Sampathkumar [4] introduced the concept of fixed, free and totally free points with respect to the parameter x in a graph. Inspired by this paper, the concept of excellence with respect to partitions defined by a parameter is studied. Let λ be a parameter (minimum/maximum). Let P_{λ} be a λ -partition of G. (P_{λ} has cardinality minimum/maximum according as maximum/minimum parameter). A vertex $v \in V$ (G) is called P_{λ} -good if $\{v\}$ belongs to a λ -partition of G. Otherwise, v is said to be P_{λ} -bad. A graph G is said to be P_{λ} -excellent if every vertex is P_{λ} -good. We can define P_{λ} -commendable, P_{λ} -fair, P_{λ} -poor graphs (according as number of P_{λ} -good vertices in G is greater than, equal to or less than P_{λ} -bad vertices in G). For our present discussion, we take β_0 as the parameter. Then $P_{\beta 0}$ will be a chromatic partition of G (that is λ -partition of G). In this paper we make a study of chromatically excellent graphs. We show that x-excellence coincides with criticality with respect to proper colorings in graphs. Adopting the concept of just excellence introduced by N. Sridharan and M. Yamuna [5], the concept of chromatic just excellence is introduced and interesting properties are derived.

Definition 1 G is chromatically excellent if for every vertex v, there exists a chromatic partition Π such that $\{v\} \in \Pi$.

Example 1 K_n is chromatically excellent.

Example 2 C_{2n} is not chromatically excellent. C_{2n+1} $(n \ge 1)$ is chromatically excellent.

Example 3 W_{2n} ($n \ge 2$) is chromatically excellent.

Example 4 Let G be the graph obtained from C_5 by adding vertices u_1, u_2, \dots, u_k and making each u_i adjacent with all u_j , $j \ge i$ and also adjacent with all the vertices of C_5 . Then $\delta(G)=k+2$, $\chi(G)=k+3$ and G is chromatically excellent.

Remark 1 A graph is β_0 -excellent if every vertex belongs to a maximum independent set of the graph. β_0 -excellence and χ -excellence have no relationship. That is, a graph may be β_0 -excellent but not χ -excellent and vice versa. For example, P_{2n} ($n \ge 2$) is β_0 -excellent but not χ -excellent. K_n is both β_0 -excellent and χ -excellent. $K_{1,n}$ ($n \ge 2$) is neither β_0 -excellent nor χ -excellent. The graph in Figure 1 is χ -excellent but not β_0 -excellent. ($\beta_0(G)=3$ and 1, 5, 6, 7 are β_0 -bad vertices).

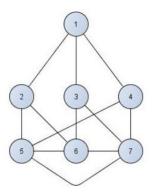


Figure 1: χ -excellent but not β_0 -excellent

Proposition 1 Let $\chi(G)=2$ (Then G is a bipartite graph and vice-versa). Let $|V(G)| \ge 3$. Then G is not χ -excellent.

Proof Suppose G is χ -excellent. Let $v \in V(G)$. Then there exists a chromatic partition $\Pi = \{V_1, V_2\}$ of G such that $V_1 = \{v\}$. Therefore $|V_2| = |G - \{v\}|$ is totally disconnected. Clearly $|V_2| \ge 2$ and v is adjacent to some vertex of V_2 . Let $w \in V_2$ be such that $wv \in E(G)$. Let $w_1 \ne w \in V_2$. Since G is χ -excellent, there exists a chromatic partition $\Pi_1 = \{\{w_1\}, V_3\}$. Therefore $v, w \in V_3$, a contradiction since $vv \in E(G)$. Therefore G is not χ -excellent.

Corollary 1 Any tree of order greater than or equal to 3 is not χ -excellent.

Remark 2 χ -excellent graphs have no isolates. For, suppose G is a χ - excellent graph which has an isolate v. If $G=\overline{K_n}$, $(n \geq 2)$, then $\chi(G)=1$ and no vertex $v \in V$ (G) can appear as a singleton in a chromatic partition. Therefore $G \neq \overline{K_n}$. Therefore $\chi(G) \geq 2$. Then there exists a χ -partition $\Pi=\{\{v\}, V_2, \cdots, V_{\chi(G)}\}$. Therefore $\deg(v) \geq \chi(G)-1 \geq 1$. But v is an isolate, a contradiction. Therefore any χ -excellent graph has no isolates.

Proposition 2 Let G_1 and G_2 be two graphs. Then $G_1 \cup G_2$ is not χ -excellent.

Proof If $V(G_1)$ (or $V(G_2)$) is a singleton then clearly $G_1 \cup G_2$ is not χ -excellent.

Let $|V(G_1)| \ge 2$ and $|V(G_2)| \ge 2$.

Case (i): $\chi(G_1) = \chi(G_2) = k$. Suppose there exists a χ -partition of $G_1 \cup G_2$ such that $\{v\}$ is an element of the partition for some $v \in V(G_1)$.

Let $\Pi=\{\{v\}, V_2, \cdots, V_k\}$ be a χ -partition of $G_1\cup G_2$. Then $\{V_2-V(G_1), \cdots, V_k-V(G_1)\}$ is a proper color partition of G_2 and hence $\chi(G_2) \leq k-1$, a contradiction. A similar reasoning shows that for any $v \in V(G_2)$, $\{v\}$ can not appear in any χ -partition of $G_1\cup G_2$. Therefore $G_1\cup G_2$ is not χ -excellent.

Case (ii): Let $\chi(G_1) \leq \chi(G_2)$. Let $\chi(G_2)=k$. Then $\chi(G_1)\cup\chi(G_2)=\chi(G_2)=k$. Suppose there exists a χ -partition of $G_1\cup G_2$ such that $\{v\}$ is an element of the partition for some $v\in V(G_1)$. Let $\Pi=\{\{v\},\,V_2,\,\cdots,\,V_k\}$ be a χ -partition of $G_1\cup G_2$. Then $\{V_2-V,\,G_1\}$, \cdots

, $V_k - V$ (G_1)} is a proper color partition of G_2 and hence $\chi(G_2) \le k-1$, a contradiction. Therefore $G_1 \cup G_2$ is not χ -excellent.

Corollary 2 If G is x -excellent then G is connected.

Remark 3 If G_1 and G_2 have same chromatic number, then no vertex of $G_1 \cup G_2$ can appear as a singleton in any χ -partition of $G_1 \cup G_2$. If χ (G_1) $\leq \chi$ (G_2) then no vertex of G_1 can appear as a singleton in any χ -partition of $G_1 \cup G_2$. But a vertex of G_2 may appear as a singleton in a χ -partition of $G_1 \cup G_2$. For example, consider $G_1 = G_2$ and $G_2 = G_3$. χ ($G_1 \cup G_2$)=3. Let V (G_1)={ U_1 , U_2 , V_3 , V_4 , $V_$

Corollary 3 If G is χ -excellent then G is connected, $\delta \ge \chi - 1$ and G has no pendent vertices.

Remark 3 P_n ($n \ge 3$) is not χ -excellent but it is an induced subgraph of an odd cycle which is χ -excellent (P_n is an induced subgraph of C_{n+1} if n is even and C_{n+2} if n is odd).

Proposition 3 If G is χ -excellent then $\mu(G)$ is χ -excellent.

Proof Let V (G)={u₁, u₂, · · · , u_n} and V (μ(G))={u₁, u₂, · · · , u_n, u'₁, u'₂, · · · , u'_n, v}. Let G be λ-excellent. Let Π ={{u_i}, V₂, · · · , V_k} be a χ-partition of G where k=χ, χ(μ(G))=k+1. Let Π _i={{u_i}, V₂ ∪ {v}, V₃, · · · , V_k, {u'₁, u'₂, · · · , u'_n} }. Π _i is a χ-partition of μ(G). Let Π _i={{u'_i}, V₂ ∪ V'₂, · · · , V_k ∪ V'_k, {u_i, v}}. Π _i is a χ-partition of

 $\mu(G). \text{ Let } \Pi_v = \{\{v\}, \ \{u_i, \ u_i'\}, \ V_2 \cup V_2 \ , \ \cdots, \ V_k \cup V_k'\}. \text{ Then } \Pi_v \text{ is a}$ $\chi\text{-partition of } \mu(G). \text{ Therefore } \mu(G) \text{ is } \chi\text{-excellent.}$

Proposition 4 Any critical graph is χ -excellent.

Proof Let G be a critical graph with chromatic number χ . Let $u \in V$ (G). Then $\chi(G-u) < \chi(G)$. Suppose $\chi(G-u) = \chi(G) - k$, $(k \ge 1)$. Let $\{V_1, V_2, \cdots, V_{\chi(G)-k}\}$ be a χ -partition of G-u. Then $\{\{u\}, V_1, V_2, \cdots, V_{\chi(G)-k}\}$ is a proper color partition of G. Therefore $\chi(G) \le \chi(G) - k + 1$. Therefore, $k \le 1$. Therefore k = 1. Therefore $\{\{u\}, V_1, V_2, \cdots, V_{\chi(G)-1}\}$ is a χ -partition of G. Therefore G is χ -excellent.

Proposition 5 If a graph G is χ -excellent, then it is critical.

Proof Suppose G is χ -excellent. Then for any $u \in V(G)$, u is either fixed or free and the end vertices of any edge in the graph are both fixed or free. But, $\chi(G-u) < \chi(G)$ for every $u \in V(G)$ and $\chi(G-e)<\chi(G)$ for every $e \in E(G)$.[4] Therefore for any proper subgraph H(G), $\chi(H) < \chi(G)$. Therefore G is critical.

Proposition 6 Let G be a vertex transitive graph with a chromatic partition containing a singleton. Then G is χ -excellent.

Proof Let Π be a chromatic partition containing $\{u\}$, say. Let $\Pi = \{\{u\}, S_2, \cdots, S_\chi\}$. Let $v \in V$ (G), $v \neq u$. Since G is vertex transitive there exists an automorphism ϕ such that $\phi(u) = v$. Let $\Pi = \{\{\phi(u)\}, \phi(S_2), \cdots, \phi(S_\chi)\}$. since ϕ is an automorphism, $\phi(S_2), \cdots, \phi(S_\chi)$ are all independent. Therefore there exists a chromatic partition containing $\{v\}$. Hence, the result.

Observation 1 There exists a vertex transitive graph which is not complete in which there exists a chromatic partition containing a singleton, for example C_5 .

Observation 2 There exists a vertex transitive graph which is not complete in which there exists no chromatic partition containing a singleton, for example, Peterson graph.

Definition 2 A graph G is just χ -excellent if every vertex appears as a singleton in exactly one χ -partition.

Example 5 K_n and C_{2n+1} are just χ -excellent.

Property 1 Every just χ -excellent graph is χ -excellent and hence connected.

Property 2 Let G be any χ -excellent graph. Add a vertex u and make it adjacent with every vertex of G. Let H be the resulting graph. Then H is not just χ -excellent, but H is χ -excellent. For; In any χ -partition of H, $\{u\}$ appears as an element. Let $v \in V(G)$. Then there exists a χ -partition Π of G such that $\{v\}\cup\Pi$. Then $\Pi\cup\{u\}$ is a χ -partition of H.

Property 3 If G is χ -excellent, then G has exactly one χ – partition (that is G is uniquely colorable) if and only if G is complete.

Property 4 Let $G \neq K_n$, be a χ -excellent graph with a full degree vertex . Then G is not just χ -excellent.

Remark 3 Let G be a non-complete χ -excellent graph. Suppose u is not a full degree vertex in G. Then u is not χ -fixed.

Proof Let Π be a χ -partition of G. Let u be not a full degree vertex. There exists $v \in V$ (G) such that u and v are not adjacent. Suppose u is χ -fixed, then $\{u\}$ appears in any χ -partition. Let $\Pi_1 = \{\{u\}, \ V_2, \ \cdots, \ V_\chi\}$ be a χ -partition. Let $v \in V_i$, $2 \le i \le \chi$. Then $\Pi_2 = \{V_i - \{v\}, \{u, v\}, V_3, \cdots, V_\chi\}$ is also a χ -partition not containing $\{u\}$, a contradiction. Therefore u is not fixed.

Remark 4 The following is a family of graphs which are χ -excellent but not just χ -excellent. Consider C_5 . Replace each vertex by K_{2n+1} , $n \geq 1$ and join every vertex of K_{2n+1} with every vertex of another K_{2n+1} if the vertices for which these are replaced graphs are adjacent. The resulting graph has chromatic number 5n + 3, is χ -excellent but not just χ -excellent.

Remark 5 If G is a just excellent graph and $G \neq K_n$, then any χ -partition of G can contain exactly one singleton.

Proof Suppose there exists a χ -partition Π of G containing more than one singleton. Let $\Pi = \{\{u_1\}, \{u_2\}, V_3, \cdots, V_X\}$ be a χ -partition of G. Since G is just χ -excellent and $G \neq K_n$, no vertex of V(G) is a full degree vertex. Therefore there exists $v_1 \in V$ (G) such that u_1 and v_1 are not adjacent. Let $v_1 \in V_i$, $3 \le i \le \chi$. Clearly $|V_i| \ge 2$ (for if $V_i = \{v_1\}$, then u_1 and v_1 are adjacent). Let $\Pi_2 = \{\{u_1, v_1\}, \{u_2\}, V_3, \cdots, V_i = \{v_1\}, \cdots, V_\chi\}$. Then Π_2 is a χ -partition containing $\{u_2\}$ a contradiction, since G is just χ -excellent.

Corollary 2 If G is just χ -excellent and $G \neq K_n$, then $\chi \leq \lfloor n+1/2 \rfloor$.

Remark 6 W₆ has chromatic number $4 > \lfloor (n+1)/2 \rfloor$ and W₆ is χ -excellent. Clearly, W₆ is not just χ -excellent.

Remark 7 The bound is sharp as seen in C_5 ($\chi(C_5)=3=5+1/2$) and C_5 is just χ -excellent.

Proposition 6 Let G be a just χ -excellent graph which is not complete. Let $u \in V(G)$. Let $\Pi = \{\{u\}, V_2, \cdots, V_\chi\}$ be a χ -partition. If $|V_i| \ge 3$, for some $i, 2 \le i \le \chi$ then there exist at least some V_j with $|V_j| \ge 3$ containing a vertex not adjacent to u.

Proof Suppose u is adjacent to every vertex in every V_i with $|V_i| \ge 3$ ($2 \le i \le \chi$).

Case 1: $|V_i| \ge 3$ for all i, $2 \le i \le \chi$. Then u is a full degree vertex in G, a contradiction since G is just _-excellent and $G \ne K_n$.

Case 2: Let $|V_i| \ge 3$ for all $i, 2 \le i \le t$ and $|V_{t+1}| = 2$. Let $V_{t+1} = \{v_1, v_2\}$. Suppose there exists V_{t+2}, \cdots, V_χ such that $|V_{t+j}| = 2, 2 \le j \le \chi - t$ (Note that no V_i is a singleton since G is just χ -excellent). Since Π is a χ -partition, u is adjacent with at least one vertex in each of V_{t+1}, \cdots, V_χ . Suppose u is adjacent with v_1 and not adjacent with v_2 in V_{t+1} . Then u is adjacent with every vertex in V_{t+j} , $1 \le j \le \chi - t$. For, otherwise, there exists some $v \in V_{t+j}$ with which $v \in V_{t+j}$ and not adjacent. Therefore $v \in V_{t+j}$ with which $v \in V_{t+j}$ and $v \in V_{t+j}$ with which $v \in V_{t+j}$ and $v \in V_{t+j}$ with which $v \in V_{t+j}$ and $v \in V_{t+j}$ with which $v \in V_{t+j}$ and $v \in V_{t+j}$ with $v \in V_{t+j}$ and $v \in V_{t+j}$ with $v \in V_{t+j}$ with $v \in V_{t+j}$ and $v \in V_{t+j}$ and $v \in V_{t+j}$ with $v \in V_{t+j}$ and $v \in V_{t+j}$ with $v \in V_{t+j}$ and $v \in V_{t+j}$ and $v \in V_{t+j}$ with $v \in V_{t+j}$ and $v \in V_{t+j}$ and $v \in V_{t+j}$ with $v \in V_{t+j}$ and $v \in V_{t+j}$

, V_χ } a contradiction since G is just χ -excellent. Therefore u is adjacent with every vertex in $V-\{v_2\}$ (Observe that if $V_{t+1}=V_\chi$ then also u is adjacent with every vertex in $V-\{v_2\}$). Since G is just χ -excellent there exists a chromatic partition $\Pi_2=\{\{v_2\},\,V_2^{\prime},\,\cdots,\,V_\chi^{\prime}\}$. Therefore $u\in V_i$ a contradiction since u is adjacent with every vertex in $V-\{v_2\}$. Therefore the proposition is true.

Remark 8 Let G be a graph which is just χ -excellent. If there exists a χ -partition in which one of the element is a singleton say $\{u\}$ and some other element with cardinality greater than or equal to 3. Then there exists a χ -partition in which none of the elements is a singleton.

Proof Let G be a just χ -excellent graph satisfying the hypothesis. Then there exists a χ -partition Π ={{u}, V₂, · · · , V_{χ}} in which $|V_i| \ge 3$ for some i, $2 \le i \le \chi$ and V_i contains a non-neighbourhood say v of u. Then Π_1 ={{u, v}, V₂, · · · , V_i-{v}, · · · , V χ } is a χ -partition of G in which each class contains at least 2 vertices of G.

Remark 9 If G is just χ -excellent, $G \neq K_n$ and $\beta_0(G)=2$, then G has exactly 'n' χ -partitions.

Remark 10 If G is just χ -excellent and $G \neq K_n$ then G has exactly 'n' χ -partitions if and only if in those χ -partitions in which one element is a singleton and the cardinality of any other element of the partition is 2.

Conclusion

Chromatic excellence is a new concept defined on Chromatic Partitions of Graphs. Usually the excellence is defined with respect to parameters. In this paper excellence is defined with respect to partitions. It paves a way for study of excellence with respect to different partitions.

References

- [1] G.H. Fricke, T. W. Haynes, S.T. Hedetniemi, S.M. Hedetniemi and R.C. Laskar. "Excellent trees," *Bulletin of the Institute of Combinatorics and its Applications*, vol 34 pp 27-38. 2002
- [2] M.A. Henning and T.W. Haynes. "Total domination excellent trees." *Discrete Mathematics*, vol. 263, pp 93-104, 2003.
- [3] T.W. Haynes and Michael A. Henning. "A characterization of i-excellent trees." *Discrete Mathematics*, vol. 248, pp 69-77, 2002.
- [4] E. Sampathkumar. "Chromatically fixed, free and totally free vertices in a graph." *Journal of Combinatorics, Inforamtion and System Sciences*, vol. 17, nos. 1-2, pp 130-138, 1992.
- [5] N. Sridharan and M. Yamuna. "Excellent-Just Excellent -Very Excellent Graphs." *Journal of Mathematics and Physical Sciences* vol.14, no.5, pp. 471-475, 1980.
- [6] N. Sridharan and M. Yamuna. "A Note on Excellent graphs." *Ars Combinatoria*, vol. 78, pp. 267-276, 2006.
- [7] M. Yamuna. "Excellent- Just Excellent -Very Excellent Graphs." Ph. D Thesis, Alagappa University, India, 2003.