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Abstract

synthesized between imidazole-based donors and dimethyl 

room temperature in dichloromethane and acetone. CT complex 

electronic transitions in UV-Vis spectra. Stoichiometric analysis 
using Job’s method revealed 1:1 and 2:1 donor–acceptor ratios 
for imidazole and N-methylimidazole, respectively. Among the 
synthesized complexes, those containing N-methylimidazole 
displayed higher stability constants, negative Gibbs free energy 

spontaneous as well as stable complexation. Additionally, the 
lowest CT transition energies (ECT
stronger donor–acceptor interactions in the less polar solvent. 

to further validate donor strength. N-methylimidazole exhibited 

and the most favourable global reactivity descriptors—chemical 

donating ability compared to imidazole.

Keywords: Imidazole, DMAD, UV studies, DFT studies, Global reactivity 
descriptors, FMO analysis

1. Introduction

broad range of applications in organic electronics [1, 2, 3, 4, 5] conductive 

devices such as photodetectors and photoconductors [9, 10]. CT complexes 
are also reported to be used as biosensors for the non-destructive analysis 
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of biological molecules, due to their high sensitivity and selectivity [11, 
12]. Furthermore, they have demonstrated catalytic activity [13] in various 
chemical processes, including photochemical [14] and electrochemical 
reactions [15]. More recently, their potential in molecular memory devices 
has attracted interest, given their ability to switch between distinct electronic 
states [16] .

employed as electron donors in CT complexes due to their aromatic 

imidazole has emerged as a particularly effective donor, outperforming 
other heterocycles such as pyrrole, pyrazole, and triazole. This enhanced 
donor ability is attributed to the presence of a pyridine-like nitrogen atom 
bearing a free lone pair, that participates in electron donation. In addition to 
its electronic properties, imidazole plays key roles in acid-base chemistry [18, 
19], catalysis [20, 21], hydrogen bonding [22, 23], and metal ion coordination 
[24, 25, 26]. In biological systems, the imidazole moiety of histidine has 

[27]. Imidazole derivatives also show a wide range of biological activity, 
including antiviral, antitumor, antimicrobial, and antihistaminic effects, and 
are industrially used as corrosion inhibitors [28, 29, [30]. 

Despite containing two strong electron-withdrawing ester groups 

considered a moderate electron acceptor due to the –CO Me substituents, 
which not only exhibit an electron-withdrawing nature but also exert 
resonance stabilization and partly delocalization of electron density away 
from the alkyne bond. Moreover, the linear carbon-carbon triple bond 

extended conjugated systems of classical acceptors like DDQ, TCNE, or 
TCNQ, which can be observed by the lower values of reduction potential 

partial charge-transfer associations [31].

DMAD-based CT complexes are less prevalent in literature, making 
them an attractive subject for novel investigations to uncover subtle donor-
acceptor behavior. In this view, we propose to use a clear, sensitive, and easy 
spectrophotometric method to create imidazole-DMAD CT complexes in the 
current study and investigate their stoichiometry, formation constants and 
transition energy spectrophotometrically.

Although  several CT complexes of imidazole with organic acceptors 
such as chloranil, iodine, 3,5-dinitrobenzoic acid, 7,7,8,8-tetracyano 
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as an acceptor have been reported to date. Literature reports have, however, 

applications, including spectroscopy, sensing, molecular electronics, and 

2. Methodology

2.1. Experimental Study

2.1.1. Materials and Instrumentation
All solvents and chemicals used in this study were of analytical and 

from Sigma-Aldrich (USA)
Absorption spectra of the UV-vis were obtained on a Shimadzu UV-1800 

nm.

2.1.2. Preparation of stock solutions
Standard solutions (1×10 ²

dichloromethane and acetone as solvents. To determine their absorption 

characterized to determine their  values.

2.1.3. Analysis of stoichiometric ratio
Spectrophotometric analysis based on Job’s continuous variation method 
was used to evaluate the stoichiometry of the CT complexes. Master solutions 

solutions of donor and acceptor were used to make the total volume 1 mL, 
which was further diluted with the respective solvent [42].
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complexes. In this method, the concentrations of acceptor were varied and 
kept greater than the donor while keeping concentration of donor constant.

the calculation of formation constant (KCT
(

[D]0 and [A]0 = baseline concentrations of donors and acceptor

By plotting the graph between [D]0 /A v/s 1/[A]0 or [A]0
2 [D]0 l /A v/s ([A]0 

+ 4[D]0

[43].

0) and transition 
energy (ECT) 

0

0 = -RT ln KCT

R = gas constant

T = temperature in Kelvin degrees

The charge transfer energy (ECT

ECT CT nm

CT = absorption maxima of synthesized complexes.

2.2. Theoretical Study
Gaussian 16 software package was used to validate the results obtained 
from the experimental studies. These computational investigations were 

Geometry optimizations of donors and acceptors in gas phase and solvent 
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by the following relations [46, 47, 48]. 

LUMO HOMO

3. Results and Discussion

3.1. Experimental results
Table 1 summarizes the absorption maxima of the donor and acceptor; each 
recorded individually in dichloromethane and acetone using a UV–Vis 

formed. The resulting solutions were scanned in the 200–800 nm region after 
30 minutes. As shown in Table 1, new absorption bands appeared in regions 
where donor and acceptor did not exhibit absorption, indicating CT complex 

allowed transitions with high molar absorptivity and occur at shorter 
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resulting in weaker absorption and longer wavelength bands. 

Stoichiometric composition of the CT complexes was assessed through 
Job’s method of continuous variation. The corresponding plots for the 
interactions of imidazoles with DMAD in dichloromethane and acetone are 

imidazole and 2:1 for N-methylimidazole CT complexes in both solvents. 

ability of N-methylimidazole. The N-methyl group increases ring electron 
density and HOMO energy, enabling DMAD to accommodate two donor 

Table 1: Spectrophotometric data for the charge transfer complexes in 
dichloromethane and acetone

CT 
Complex

Imidazole (D): 
DMAD (A) 

(1a)

N-methylimi-
dazole (D): 

DMAD (A) (2a)

Imidazole 
(D): 

DMAD 
(A) (1b)

N-methylimi-
dazole (D): 
DMAD (A) 

(2b)
In dichloromethane In Acetone

 (nm)
(donor) 

273 234 275 234 

(nm)
(Acceptor)

234 238 238 236 

 (nm)
330 
454 

354 
506 

336 
459 

402 
508 

KCT

(mol-1)
12.0 x 102 22.0 x 102 4.14 x 102 6.98 x 102

(cm-1mol-1)
0.689 x 102 8.003 x 102 0.526 x 102 1.75 x 102

ECT

(eV)
2.709 2.448 2.739 2.457

0

(KJ mol-1)
-6.154 -19.052 -3.518 -16.223
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It is evident from the Table 1 that CT complexes of N-methylimidazole 
exhibited the higher KCT
to imidazole in both solvents. The solvent-dependent variation in the 
formation constants can be attributed to differences in polarity, dielectric 

constant, favors stronger donor–acceptor interactions between imidazole 
derivatives and DMAD, thereby enhancing complex stability and resulting 
in higher KCT
solvate both donor and acceptor molecules effectively, which weakens the 
donor–acceptor charge-transfer interaction, leading to lower formation 
constants. These results underline the crucial role of solvent polarity and 
solvation in modulating CT complex stability [49].

The linear plots further supported these observations and found to be 
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generation of imidazole-based charge-transfer systems, whereas the greatest 
 is accompanied by the minimum transition energy (ECT

3.2. Theoretical Results
The global reactivity descriptors of donor calculated with the help of 

Table 2: Global reactivity descriptors for optimized geometries of imidazoles at DFT 

Molecule
Imidazole N-methyl imidazole

Gas phase DCM Acetone Gas phase DCM Acetone

EHOMO (au) -0.238 -0.241 -0.242 -0.233 -0.238 -0.239

ELUMO (au) -0.007 0.008 0.009 -0.004 0.004 0.004

au 0.231 0.249 0.251 0.229 0.242 0.243

eV 6.299 6.781 6.820 6.233 6.584 6.600

eV 3.149 3.390 3.410 3.116 3.292 3.300

SeV
-1 0.318 0.295 0.293 0.321 0.304 0.303

µeV -3.338 -3.171 -3.164 -3.235 -3.187 -3.198
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eV 3.338 3.171 3.164 3.235 3.187 3.198

eV 1.769 1.483 1.468 1.679 1.543 1.549

1.060 0.935 0.928 1.038 0.968 0.969

The optimised geometries of imidazoles and their energy gap is also 
presented in the Figure 9 and 10 respectively.

Figure 9: Optimized geometries of imidazole and N-methyl imidazole

Figure 10:
level in gas phase.
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donating ability of N-methylimidazole. Methyl substitution enhances 
electron density on the nitrogen atom, promoting stronger charge transfer 
interactions with DMAD. DFT-derived descriptors, including higher softness 

further supported its enhanced reactivity. In contrast, imidazole showed 
lower HOMO energy and less favorable reactivity indices, consistent with 
its lower KCT
electron releasing group improve donor strength and CT complex formation 
ability. 

To know the strength of charge transfer complexes of imidazole-DMAD, 
FMO analysis has also been carried out theoretically at the same level in 
gas phase and in both solvents i.e. DCM and acetone. The energy difference 
between HOMO of donor and LUMO of acceptor was calculated in all four 

Table 3: 
of synthesised CT complexes

Com-
pound

HOMO (eV) LUMO (eV)
HOMO (donor) – 
LUMO (acceptor) 
energy gap (eV)

Gas 
phase

Acetone DCM
Gas 

phase
Acetone DCM

Gas 
phase

Acetone DCM

Imidazole -6.488 -6.574 -6.561 -0.189 0.246 0.219 4.315 4.417 4.414
N-methyl 
imidazole

-6.351 -6.498 -6.479 -0.119 0.102 0.105 4.178   4.341 4.332

DMAD -8.254 -8.435 -8.417 -2.173 -2.157 -2.147 - - -
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Figure 11: The HOMO-LUMO energy diagrams of imidazoles- DMAD CT 
complexes

It is evident from Table 3, that imidazole and N-methylimidazole act as 
strong electron donors with high-lying HOMOs, whereas DMAD serves as 

Orbital plots showed, the HOMO is localized on the donor and the LUMO 

transfer pathway. Among the studied systems, the N-methylimidazole–

strongest donor ability. Figures 11 and 12 depict the optimized geometries 

and N-methylimidazole-DMAD complexes, illustrating the electron density 
transfer and donor-acceptor interaction behavior discussed above.

probable mechanism and structures of the synthesized CT complexes are 
outlined below:
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Figure 12:
N-methylimidazole with DMAD

4. Conclusions
The present study successfully demonstrated the formation and 

Spectrophotometric and DFT analyses consistently revealed that 

favourable global reactivity descriptors. The enhanced donor ability is 
attributed to methyl substitution, which increases electron density and 

Experimental results, including higher formation constants and molar 

complex formation, offering valuable insights for the design of advanced 
donor–acceptor systems in optoelectronic and sensing applications.
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