Synthesis and Characterization of Palladium(II) Complexes with Substituted Dihydrobenzoimidazoquinazoline Derivatives

Rita Bhattacharjee*and Virupaiah Gayathri \dagger

Abstract

A series of palladium(II) halo complexes of the types $\left[\mathrm{PdX}_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{nH}_{2} \mathrm{O}\left\{\mathrm{n}=0, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{L}^{4}\right.$ and $\mathrm{L}^{6} ; \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{L}^{3}$, $\mathrm{L}^{4}, \mathrm{~L}^{5}$ and $\mathrm{L}^{6} ; \mathrm{n}=2, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{L}^{3}$ and $\mathrm{L}^{7}, \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{L}^{1}$; $\mathrm{Pd}_{2} \mathrm{X}_{4} \mathrm{~L}_{2}\left\{\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{L}=\mathrm{L}^{2}\right.$ and $\left.\mathrm{L}^{8}\right\}$ and $\mathrm{Pd}_{2} \mathbf{X}_{4} \mathrm{~L}_{3}[\mathrm{X}=\mathrm{Cl}, \mathrm{L}$ $\left.=\mathrm{L}^{1} ; \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{L}^{7}\right]$ were prepared where L is $6-\mathrm{R}-5,6-$ dihydrobenzoimidazo quinazoline (R -Diq; where $\mathrm{R}=$ phenyl: L^{1} /furyl: $\mathrm{L}^{2} /$ thiophenyl: $\mathrm{L}^{3} / \mathrm{o}$ or p hydroxyphenyl: L4, $\mathrm{L}^{5} / \mathrm{o}$ - or p-chlorophenyl: L^{6}, $\mathrm{L}^{7} /$ dimethylaminophenyl: $\quad L^{8}$ and characterized by elemental analyses, molar conductivity measurements, TGA, infrared, electronic, NMR and mass spectral techniques. Based on these studies, monomeric/dimeric structure with a square planar geometry around the metal ion was proposed for these complexes. Anti-microbial activity for some of the synthesized complexes were investigated.

Keywords: dihydrobenzoimidazoquinazoline, palladium(II), thermal analysis, mass spectra, biological activity.

[^0]
1. Introduction

N -heterocycles like imidazoles, benzimidazoles and quinazolines have the ability to stabilize various oxidation states of transition metals. Complexes of divalent palladium find application in catalysis [1,2], in biochemical reactions [3], in environment related studies [4] , as anticancer drugs [5] and in antimicrobial studies [6].

R-Diq; $\mathrm{R}=$ phenyl: L^{1} /furyl: L^{2} /thiophenyl: $\mathrm{L}^{3} / \mathrm{o}$ - or p hydroxyphenyl: $\mathrm{L}^{4}, \mathrm{~L}^{5} / \mathrm{o}-\mathrm{or}$ p-chlorophenyl: L^{6}, L^{7} /dimethylaminophenyl: L^{8}

2. Experimental

2.1Reagents

All the reagents were of analar grade. The solvents used were purified according to standard procedure. Palladiumchloride was obtained from Arora Matthey, Kolkata, India. N-heterocycles were prepared according to the published procedures [7-10].

2.2Measurements

Microanalyses were obtained from 240B Perkin - Elmer elemental analyzer. IR (nujol mull) spectra were recorded on Shimadzu FTIR 8400 s and far-ir spectra were recorded on a Bruker IFS 66 v/S instrument. Electronic spectra were recorded in DMF on Shimadzu UV 3101PC. FAB mass spectra were recorded on a JEOL SX102 Mass Spectrometer at room temperature using Argon/Xenon as the FAB gas and m-nitrobenzyl alcohol as the matrix. NMR spectra were recorded on a Bruker WH 270 MHz and Bruker AMX 400

MHz (both equipped with Aspect 2000 computers) NMR Spectrometers in the solvent $\mathrm{DMSO}_{6} \mathrm{~d}_{6}$. Molar conductivity measurements were made on a Systronic conductivity meter 304 cell type CD-10.

2.3Preparationof 6-R-5,6-dihydrobenzoimidazo[1,2-c] quinazoline derivatives (L^{1} to L^{8})

Synthesis and single crystal X - ray structural studies of the ligands L^{1}, L^{2}, L^{5} and L^{8} were reported earlier [7-10]. Similar procedure was adopted for synthesis of other 6-R-5,6-dihydrobenzoimidazo [1,2-c] quinazoline derivatives ($\mathrm{L}^{3}, \mathrm{~L}^{4}, \mathrm{~L}^{6}$, andL ${ }^{7}$). These were synthesized as follows. A mixture of 2-aminophenylbenzimidazole (0.05 mol) in 200 ml alcohol and the corresponding aldehydes (0.05 mol) (thiophenaldehyde/) - hydroxybenzaldehyde /o-orpchlorobenzaldehyde) were refluxed for 5 hours. The resulting solution was concentrated under reduced pressure to a small volume to obtain a yellow compound. It was filtered and recrystallised from alcohol to get cream/white crystalline compound (yield: 60-70 \%).

2.4Synthesis of the complexes

The N-heterocycles L^{1} to L^{8} (1 mmol)were reacted with palladium halide (1 mmol) (chloro and bromo) in presence of the respective halo acid in acetone in 1:2 ratio at refluxing temperature to afford complexes of the types $\left[\mathrm{PdX}_{2} \mathrm{~L}_{2}\right] \cdot \mathbf{n H}_{2} \mathrm{O}\left\{\mathrm{n}=0, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{L}^{4}\right.$ and L^{6}; $\mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{L}^{3}, \mathrm{~L}^{4}, \mathrm{~L}^{5}$ and $\mathrm{L}^{6} ; ~ ; ~ \mathrm{n}=2, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{L}^{3}$ and $\mathrm{L}^{7}, \mathrm{X}=\mathrm{Br}, \mathrm{L}=$ $\left.\mathrm{L}^{1}\right\} ; \operatorname{Pd}_{2} \mathbf{X}_{4} \mathrm{~L}_{2}\left\{X=\mathrm{Cl}, \mathrm{Br}, \mathrm{L}=\mathrm{L}^{2}\right.$ and $\left.\mathrm{L}^{8}\right\}$ and $\operatorname{Pd}_{2} \mathbf{X}_{4} \mathrm{~L}_{3}\left[\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{L}^{1}\right.$; $\left.X=B r, L=L^{7}\right]$ as yellow solids. Yield (45-50\%). The chloro complex of L^{5} could not be isolated. The complexes were insoluble in common organic solvents but soluble in DMF and DMSO in which they behaved as non-electrolytes.

The physical properties and analytical data of the complexes are compiled in table 1.

Table 1: The physical properties and analytical data of Pd (II) complexes of $\mathrm{L}^{1}-\mathrm{L}^{8}$.

Complex	Colour	$\begin{aligned} & \text { D.Pt } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\Lambda^{\#}$	Analytical data (\%)*		
				C	H	N
$\mathrm{PdCl}_{2} \mathrm{~L}^{1} .5$	Yellow	295	24	$\begin{gathered} \hline 58.78 \\ (57.79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.82 \\ (3.64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.26 \\ (10.11) \end{gathered}$
$\left[\mathrm{PdBr}_{2} \mathrm{~L}_{2}{ }_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Bright yellow	270	25	$\begin{gathered} 53.45 \\ (53.56) \\ \hline \end{gathered}$	$\begin{gathered} 2.68 \\ (3.82) \\ \hline \end{gathered}$	$\begin{gathered} 9.39 \\ (9.36) \\ \hline \end{gathered}$
$\mathrm{PdCl}_{2} \mathrm{~L}^{2}$	Pale yellow	248	28	$\begin{gathered} \hline 46.12 \\ (46.53) \\ \hline \end{gathered}$	$\begin{gathered} 2.73 \\ (2.82) \\ \hline \end{gathered}$	$\begin{gathered} 9.07 \\ (9.04) \\ \hline \end{gathered}$
$\mathrm{PdBr}_{2} \mathrm{~L}^{2}$	Bright yellow	286	16	$\begin{gathered} \hline 50.53 \\ (51.42) \end{gathered}$	$\begin{gathered} 2.72 \\ (3.12) \end{gathered}$	$\begin{aligned} & 10.25 \\ & (9.95) \end{aligned}$
$\left[\mathrm{PdCl}_{2} \mathrm{~L}^{3} 2\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Yellow	287	21	$\begin{gathered} 52.79 \\ (52.72) \end{gathered}$	$\begin{gathered} 3.61 \\ (3.44) \end{gathered}$	$\begin{gathered} 10.61 \\ (10.60) \end{gathered}$
$\mathrm{PdBr}_{2} \mathrm{~L}^{3}$	Yellow	303	12	$\begin{gathered} 50.44 \\ (49.53) \end{gathered}$	$\begin{gathered} 3.58 \\ (3.00) \end{gathered}$	$\begin{gathered} 9.99 \\ (9.63) \\ \hline \end{gathered}$
$\mathrm{PdCl}_{2} \mathrm{~L}^{4} 2$	Yellow	252	17	$\begin{gathered} 59.71 \\ (59.75) \end{gathered}$	$\begin{gathered} 3.78 \\ (3.76) \end{gathered}$	$\begin{gathered} 10.68 \\ (10.45) \\ \hline \end{gathered}$
$\mathrm{PdBr}_{2} \mathrm{~L}^{4}$	Yellow	260	22	$\begin{gathered} 53.16 \\ (53.80) \\ \hline \end{gathered}$	$\begin{gathered} 3.89 \\ (3.38) \end{gathered}$	$\begin{gathered} 9.67 \\ (9.41) \end{gathered}$
$\mathrm{PdBr}_{2} \mathrm{~L}^{5}$	Dark yellow	271	20	$\begin{gathered} 53.63 \\ (53.80) \end{gathered}$	$\begin{gathered} 3.14 \\ (3.39) \end{gathered}$	$\begin{gathered} 9.04 \\ (9.41) \end{gathered}$
$\mathrm{PdCl}_{2} \mathrm{~L}^{6}$	Yellow	310	16	$\begin{gathered} 56.91 \\ (57.13) \end{gathered}$	$\begin{gathered} 3.99 \\ (3.36) \end{gathered}$	$\begin{aligned} & 10.42 \\ & (9.99) \end{aligned}$
$\mathrm{PdBr}_{2} \mathrm{~L}^{6}$	Yellow	302	17	$\begin{gathered} 51.86 \\ (51.67) \\ \hline \end{gathered}$	$\begin{gathered} 3.69 \\ (3.04) \\ \hline \end{gathered}$	$\begin{gathered} 9.60 \\ (9.04) \\ \hline \end{gathered}$
$\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Brownish yellow	255	29	$\begin{gathered} 54.47 \\ (54.79) \end{gathered}$	$\begin{gathered} \hline 3.52 \\ (3.22) \end{gathered}$	$\begin{gathered} 8.83 \\ (9.58) \end{gathered}$
$\mathrm{PdBr}_{2} \mathrm{~L}^{7}{ }_{1.5}$	Dark yellow	286	31	$\begin{gathered} 48.53 \\ (48.83) \end{gathered}$	$\begin{gathered} 2.59 \\ (3.48) \end{gathered}$	$\begin{gathered} 8.86 \\ (8.54) \end{gathered}$
$\mathrm{PdCl}_{2} \mathrm{~L}^{8}$	Dark yellow	312	16	$\begin{gathered} 51.98 \\ (51.03) \\ \hline \end{gathered}$	$\begin{gathered} 3.16 \\ (3.89) \\ \hline \end{gathered}$	$\begin{gathered} 10.88 \\ (10.82) \\ \hline \end{gathered}$
$\mathrm{PdBr}_{2} \mathrm{~L}^{8}$	Dark yellow	273	22	$\begin{gathered} \hline 43.52 \\ (43.55) \end{gathered}$	$\begin{gathered} 3.33 \\ (3.50) \\ \hline \end{gathered}$	$\begin{gathered} 9.24 \\ (9.29) \\ \hline \end{gathered}$

\#: $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$; (in DMF) *: calculated values are in parentheses.

3.1 Infrared spectral studies

IR spectra of the complexes were recorded as nujol mull and the Far-IR spectra were recorded as polyethylene pellets. IR spectra of
the complexes (Table 2) were similar to those of the ligands L^{1} to L^{8} except for minor shifts in the position of the bands implying coordination of the N -heterocycles to the palladium(II) ion [11, 12]. The spectra of the chloro complexes of L^{3} and L^{7} and the bromo complex of L^{1} exhibited peaks at $3406,3475,3475 \mathrm{~cm}^{-1}$ respectively which can be attributed to the presence of lattice water in the molecule. The $\mathbf{v}_{\mathrm{C}=\mathrm{N}}$ of benzimidazole and $\mathbf{v}_{\mathrm{C}=\mathrm{C}}$ of benzimidazole and quinazoline groups were observed in the region 1616-1618 cm^{-1} for the complexes as compared to the $1612-1620 \mathrm{~cm}^{-1}$ exhibited by the ligands. $\mathbf{v}_{\mathrm{N}-\mathrm{H}}$ of quinazoline ring was observed in the range $3240-3321 \mathrm{~cm}^{-1}$. The complexes exhibited $\mathbf{v}_{\text {N- }}$ in-plane bending vibration in the region $1577-1596 \mathrm{~cm}^{-1}$ and $\mathbf{v}_{\mathrm{C}-\mathrm{N}}$ and $\boldsymbol{\delta}_{\mathrm{NH}}$ in the range $1330-1346 \mathrm{~cm}^{-1} . \mathbf{v}_{\mathrm{c}=\mathrm{c}}$ and $\boldsymbol{\delta}_{\mathrm{CH}}$ appeared in the region 1504$1527 \mathrm{~cm}^{-1}$. The complexes exhibited in-plane CH deformation and ring breathing modes between 1225 and $1269 \mathrm{~cm}^{-1}$ and CH out-ofplane deformation of quinazoline ring vibrations were observed in the range $1141-1189 \mathrm{~cm}^{-1}$. The Far-IR spectra of the complexes revealed the presence of stretching vibrations of the terminal $\mathrm{Pd}-\mathrm{Cl}$ bond in the range $329-333 \mathrm{~cm}^{-1}$. The stretching frequencies of terminal $\mathrm{Pd}-\mathrm{Br}$ bond was observed as twin forked peaks in the region $245-282 \mathrm{~cm}^{-1}$. The bridging $\mathrm{Pd}-\mathrm{Cl}$ stretching vibrations of the chloro complexes of L^{2} and L^{8} were observed at 265 and $294 \mathrm{~cm}^{-1}$ and for the bromo complexes at 370 and $366 \mathrm{~cm}^{-1}$.

3.2Electronic spectral studies

The electronic spectra of the quinazoline derivatives and their complexes were recorded in DMF. They displayed bands (Table 2) in the region 27,000 and $38,000 \mathrm{~cm}^{-1}$ assignable to the $\Pi-\Pi^{*}$ and $n-$ Π^{*} transitions of the N-heterocycles. The metal-to-ligand charge transfer transitions were observed in the region 22,200 to $28,000 \mathrm{~cm}^{-}$ ${ }^{1}$. They also exhibited weak bands in the range 19,200 to $22,700 \mathrm{~cm}^{-1}$ assignable to the ${ }^{1} \mathrm{~B}_{1 g} \rightarrow{ }^{1} \mathrm{~A}_{1 g}$ transitions which are characteristic of a palladium(II) square planar complex [13-16].

Table 2: Electronic spectral data of the complexes $\left(\mathrm{cm}^{-1}\right)^{*}$.

Complex	Ligand transitions		MLCT	d-d
	$\mathrm{n} \rightarrow \mathrm{m}^{*}$	$\Pi \rightarrow \Pi^{*}$	$\mathrm{d} п \rightarrow$ рп	${ }^{1} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow \mathrm{~A}_{1 \mathrm{~g}}$
$\mathrm{Pd}_{2} \mathrm{Cl}_{4} \mathrm{~L}^{1}{ }_{3}$	$\begin{aligned} & \hline 36603(13182) \\ & 34060(14868) \end{aligned}$	32960(15427)	27473(8196)	22665(306)
$\left[\mathrm{PdBr}_{2} \mathrm{~L}^{1} 2\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	34083(22004)	33025(22859)	27518(9983)	21777(261)
$\mathrm{PdCl}_{2} \mathrm{~L}^{2}$	$\begin{aligned} & 35236(22078) \\ & 33135(21077) \\ & \hline \end{aligned}$	30854(12177)	22442(1152)	20350(241)
$\mathrm{PdBr}_{2} \mathrm{~L}^{2}$	33944(14446)	32895(14221)	27609(7585)	22371(322)
$\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	33933(18024)	32960(18249)	27405(6482)	23256(245)
$\mathrm{PdBr}_{2} \mathrm{~L}^{3} 2$	33289(27949)	32830(27210)	27518(8369)	22599(354)
$\mathrm{PdCl}_{2} \mathrm{~L}^{4}$	34200(37054)	32895 (31699)	26853(6914)	21524(666)
$\mathrm{PdBr}_{2} \mathrm{~L}^{4}$	34153(16135)	33003(14305)	26939(7097)	22163(397)
$\mathrm{PdBr}_{2} \mathrm{~L}^{5}$	$\begin{aligned} & \hline 37878(18077) \\ & 33829(13941) \\ & \hline \end{aligned}$	32851(13868)	$\begin{aligned} & \hline 26969(6732) \\ & 25075(4228) \\ & \hline \end{aligned}$	22634(434)
$\mathrm{PdCl}_{2} \mathrm{~L}^{6} 2$	$\begin{aligned} & 35236(26163) \\ & 34083(27672) \end{aligned}$	$\begin{aligned} & 32895(25879) \\ & 27042(10189) \end{aligned}$	22242(2002)	21368(67)
$\mathrm{PdBr}_{2} \mathrm{~L}^{6}$	$\begin{aligned} & 35361(26210) \\ & 33967(28499) \\ & \hline \end{aligned}$	$\begin{aligned} & 32895(26567) \\ & 26969(14305) \end{aligned}$	22272(421)	20956(139)
[$\left.\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	34412(13280)	33047(13749)	27996 (8042)	21749(193)
$\mathrm{Pd}_{2} \mathrm{Br}_{4} \mathrm{~L}^{7} 3$	$\begin{aligned} & \hline 37565(14939) \\ & 35638(14303) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34341(14959) \\ & 33047(15416) \\ & \hline \end{aligned}$	27870(8561)	20408(186)
$\mathrm{PdCl}_{2} \mathrm{~L}^{8}$	37908(12786)	32873(13013)	$\begin{aligned} & 25393(2035) \\ & 25075(2598) \\ & \hline \end{aligned}$	19268(121)
$\mathrm{PdBr}_{2} \mathrm{~L}^{8}$	$\begin{aligned} & 37936(13154) \\ & 33025(15111) \\ & \hline \end{aligned}$	31566(14166)	26154(2685)	19223(153)

* in DMF

3.3 NMR spectral studies

The proton and ${ }^{13} \mathrm{C}$ NMR spectra of the complexes were recorded in DMSO-d. d_{6}. The spectra of the complexes resembled the spectra of the free N -heterocycles except for some minor shifts implying coordination of ligand to the metal ion. Ligand-to-metal σ donation and metal-to-ligand $п$-back donation give rise to positive and negative coordination induced shifts (c.i.s.) of the peaks in the NMR spectra of metal complexes [17-19].

a) ${ }^{\mathbf{1}} \mathbf{H N M R}$ spectral studies

The ${ }^{1} \mathrm{H}$ NMR spectral patterns of the complexes of L^{1} to L^{8} were comparable to their respective ligands except for the resonance signals due to the substituted R groups (Tables 3 and 4). The
resonance peak due to the NH of the quinazoline ring was observed as a singlet in the range $14.28-7.22 \mathrm{ppm}$ and this was found to disappear in the spectra of the deuterated samples confirming it to be the NH proton. The CH of the quinazoline moiety was observed as a singlet in the range $7.60-7.00 \delta$ was shifted by -0.41 to 0.34 ppm on complexation. The benzimidazole ring protons $\mathrm{H}-2^{\prime}, 3^{\prime} 4^{\prime}$ and 5^{\prime} were found to resonate as multiplets in the range $8.09-6.92 \mathrm{ppm}$ with c.i.s. of $-0.59-0.36 \mathrm{ppm}$. The resonance signals of quinazoline ring protons $\mathrm{H}-7,8,9$ and 10 were well resolved and appeared in the region $8.70-6.66 \delta$ and were shifted by -0.33 to 0.76δ on complexation. The phenyl protons of the substituted R group in the $\mathrm{Pd}(\mathrm{II})$ complex of L^{1} appeared in the range $7.54-7.20 \delta$ with the $\mathrm{H}-3^{\prime}$ proton being most deshielded. The complexes of L^{2} and L^{3} contain O and S in the substituted R group respectively and the $\mathrm{H}-4$ proton attached to the carbon atom bonded to the O / S were more deshielded and shifted downfield as compared to the $\mathrm{H}-2^{\prime \prime}$ and $3^{\prime \prime}$. These signals were found in the region $7.68-6.38 \mathrm{ppm}$ with c.i.s of $0.03-0.88 \mathrm{ppm}$. The $\mathrm{Pd}(\mathrm{II})$ complexes of L^{4} and L^{5} were found to resonate in the region 7.83 6.75δ and were shifted by 0.12 to 0.71 ppm on complexation. The hydroxyl proton appeared as an intense singlet in the downfield region of 10.20 and 9.66δ for L^{4} and L^{5} respectively and it was seen between $10.20-10.30 \delta$ on complexation. The $\operatorname{Pd}(\mathrm{II})$ complexes of L^{6} and L^{7} exhibited peaks in the range $7.66-6.62 \delta$ with positive and negative shifts in the range -0.62 to 0.65δ. The protons of the complexes of L^{8} were found to resonate in the region $7.35-6.68$ ppm and were shifted by $\sim 0.20 \delta$. The methyl protons in dimethyl amino group appeared around 1.88 ppm and underwent a shift of 0.94 ppm on complexation. The ${ }^{1} \mathrm{H}$ NMR spectral data of the ligands L^{1} to L^{8} and their complexes are complied in tables 3 and 4.

b) ${ }^{13} \mathrm{C}$ NMR spectral studies

The ${ }^{13} \mathrm{C}$ NMR spectral pattern was similar for the complexes of L^{1} L^{8} except for the substituted R groups, table 3 and 4the carbon atom $\mathrm{C}-2$ was found to be most deshielded being bonded to two nitrogen atoms and appeared in the downfield region between 154.80 140.15 ppm . It exhibited an enormous shift of $-5.88-7.06 \mathrm{ppm}$ on complexation. C-4 of the heterocycles which is bonded to one nitrogen gave a signal in the downfield region 144.96-133.91 δ
with c.i.s. of -10.76 to 2.39 ppm . C-6 ' and 7^{\prime} of the benzimidazole moiety being bonded to one nitrogen each were shifted down field in the ranges $139.14-127.87 \delta$ and $145.26-138.66 \delta$ respectively. The C-7 ' is more deshielded of the two as it is bonded to tertiary nitrogen and appeared around 12 ppm . The benzimidazole carbons C $-3,7,8,9$ and 10 gave resonance signals in the range 134.51 110.00δ and exhibited large shifts in the range $-8.88-8.55 \delta$ on complexation. The benzimidazole ring carbons $C-2^{\prime}, 3^{\prime}, 4^{\prime}$ and 5^{\prime} are seen in the region $132.44-108.51 \delta$ with c.i.s. of $-3.18-3.42$ ppm . The resonance signal of $\mathrm{C}-6$ was observed in the range 73.77 -56.02δ with c.i.s. of -11.09 to 6.94 ppm on complexation.

3.4 Mass spectral studies

Electrospray mass spectrum of the complex $\mathrm{Pd}_{2} \mathrm{Cl}_{4} \mathrm{~L}^{1} 3$ was carried out by dissolving the sample in acetonitrile. The ESI capillary was set at 3.5 kV and the cone voltage was 40 V . Mass spectrum of the complex has revealed a molecular ion peak at 1248 which may be attributed to the dimeric molecular mass of the complex. Elemental composition of ions and their m / z values coincide with peaks produced by ESI - MS of $\mathrm{Pd}_{2} \mathrm{Cl}_{4} \mathrm{~L}_{3}$ and thereby support the dimeric nature of the complex [20]. The data are compiled in the table 7.

Table 7: Elemental composition of the ions and their m / z values produced by ESI-MS of $\mathrm{Pd}_{2} \mathrm{Cl}_{4} \mathrm{~L}_{3}$.

Complex/complex ions	\mathbf{m} / \mathbf{z}	Complex/complex ions	\mathbf{m} / \mathbf{z}
$\mathrm{Pd}_{2} \mathrm{Cl}_{4} \mathrm{~L}_{3}$	1248	PdClL	737
$\mathrm{Pd}_{2} \mathrm{Cl}_{3} \mathrm{~L}_{3}$	1211	PdL	702
$\mathrm{Pd}_{2} \mathrm{Cl}_{3} \mathrm{~L}_{2}$	913	$\mathrm{PdL}(\mathrm{L}-\mathrm{CH})$	687
$\mathrm{Pd}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}$	878	PdL	404
$\mathrm{Pd}_{2} \mathrm{ClL}_{2}-2 \mathrm{H}$	841	L	298

3.5 Thermogravimetric analysis

Thermogravimetric analysis was carried out for the complexes $\left[\mathrm{PdBr}_{2} \mathrm{~L}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with heating rate of $15{ }^{\circ} \mathrm{C} / \mathrm{min}$ (Table 8). The water molecules were lost below $100^{\circ} \mathrm{C}$ which suggest the lattice nature of water. The chloride ions were lost in the range $230-285{ }^{\circ} \mathrm{C}$ followed by N -heterocycles which decomposed beyond $345^{\circ} \mathrm{C}$.

Table 8: TGA data of the complexes

Complex	TGA data		
	Temp. at which species lost $\left({ }^{\circ} \mathrm{C}\right) / \%$ Weight loss (calculated)		
	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{Cl} / \mathrm{Br}$	L
[$\left.\mathrm{PdBr}_{2} \mathrm{~L}^{1} 2\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 72 / \\ 4.4(4.5) \end{gathered}$	$\begin{gathered} 230-269 / \\ 13.2(13.2) \end{gathered}$	$\begin{gathered} 345 / \\ 50.1(50.2) \\ \hline \end{gathered}$
$\left[\mathrm{PdCl}_{2} \mathrm{~L}^{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 48 / \\ 4.5(4.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 260-285 / \\ 13.1(13.0) \\ \hline \end{gathered}$	$\begin{gathered} 364 / \\ 49.9(50.0) \\ \hline \end{gathered}$
$\left[\mathrm{PdCl}_{2} \mathrm{~L}^{7} 2\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 74 / \\ 4.0(4.1) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 248-269 / \\ & 12.2(12.2) \\ & \hline \end{aligned}$	$\begin{gathered} 492 / \\ 50.1(50.0) \\ \hline \end{gathered}$

4. Stereochemistry

The coordination of the heterocycles to the $\mathrm{Pd}(\mathrm{II})$ ions were confirmed by the physical and analytical data, molar conductivity measurements, IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral results. The electronic spectral results imply the presence of a square planar geometry around the metal ion. The far IR spectra reveal the presence of terminal and bridging halogens in the complexes with L^{2} and L^{8}. TGA studies show the presence of lattice water in the chloro complexes of L^{3} and L^{7} and bromo complex of L^{1}. Mass spectral data reveal the dimeric nature of the complex $\mathbf{P d}_{2} \mathbf{C l}_{4} \mathbf{L}^{1}$. From the above mentioned studies it can be inferred that the heterocycles behave as monodentate ligands except for chloro complex of L^{1} and bromo complex of L^{2} wherein they act as a bridging bidentate ligands. A monomeric structure I for the $\mathrm{PdX}_{2} \mathrm{~L}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$ type of complexes and a binuclear structure II and III for the $\mathrm{Pd}_{2} \mathrm{X}_{4} \mathrm{~L}_{2}$ and $\mathrm{Pd}_{2} \mathrm{X}_{4} \mathrm{~L}_{3}$ type of complexes respectively were proposed.

$$
\begin{gathered}
\mathrm{I} \\
\mathrm{Pd} \mathrm{X}_{2} \mathrm{~L}_{2} \\
\mathrm{Cl}, \mathrm{~L}=\mathrm{L}^{3},, \mathrm{~L}^{6}, \mathrm{~L}^{7}, \mathrm{~L}^{9}
\end{gathered}
$$

> II
> $\mathrm{Pd}_{2} \mathrm{X}_{4} \mathrm{~L}_{3}$
> $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Ph} ; \mathrm{L}^{1}$ $\mathrm{X}=\mathrm{Br} ; \mathrm{R}=\mathrm{p}$-chlorophenyl; L^{7}

$$
\begin{gathered}
\text { III } \\
\mathrm{Pd}_{2} \mathrm{X}_{4} \mathrm{~L}_{2} \\
\mathrm{X}=\mathrm{Cl}, \mathrm{Br} ; \mathrm{L}=\mathrm{L}^{2}, \mathrm{~L}^{8}
\end{gathered}
$$

5. Biological activities

The test solutions containing palladium(II) complexes exhibited good antimicrobial properties at 100 ppm concentration for both strains of bacteria and the fungi Yeast. Six of the quinazoline derivatives $\mathrm{L}^{1-} \mathrm{L}^{5}$ and L^{8} and their chloro complexes of $\mathrm{Pd}(\mathrm{II})$ were tested for in vitro growth inhibitory activity against Bacillus subtilis, E.coli and Yeast by cup - plate method (Table 9). Septran and ampicillin were used as the standard antibiotics for Bacillus subtilis and E.coli respectively while grissoflumin was used as the standard antifungal agent. The toxicity of the quinazoline derivatives against the microbes was found to be effective at 50 ppm concentration against Bacillus subtilis and Yeast and 100 ppm against E.coli. The $\mathrm{Pd}(\mathrm{II})$ complexes were found to be effective against the microbes at

100 ppm concentration. It was observed that the $\mathrm{Pd}(\mathrm{II})$ complexes exhibited lower inhibitory activity as compared to those of the quinazoline derivatives. Though the metal complexes and quinazoline derivatives proved to be toxic against microorganisms, the standard drugs were found to be more toxic. The ligands L^{2} and L^{8} were found to be ineffective against the microbe E.coli while ligandsL ${ }^{5}$ and L^{8} were found to be ineffective against the microbe Bacillus subtilis. The palladium complex $\mathrm{PdCl}_{2}\left(\mathrm{~L}^{8}\right)$ was found to be ineffective against the microbe Bacillus subtilis. The ligands and their complexes were moderately effective against Yeast.

Table 9: Antimicrobial activity of the quinazoline derivatives and their complexes.*

Compound \ddagger	Yeast	E.coli	Bacillus subtilis	Pd complex ${ }^{\dagger}$	Yeast	E.coli	Bacillus subtilis
$\left(\mathrm{L}^{1}\right)$	40	45	46	$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{1}\right)_{1.5}$	50	50	10
$\left(\mathrm{~L}^{2}\right)$	50	Nd	46	$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{2}\right)_{2}$	50	57	31
$\left(\mathrm{~L}^{3}\right)$	50	75	50	$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$	55	57	18
$\left(\mathrm{~L}^{4}\right)$	65	76	40	$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{4}\right)_{2}$	45	67	18
$\left(\mathrm{~L}^{5}\right)$	70	50	Nd	$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{5}\right)_{2}$	55	50	18
$\left(\mathrm{~L}^{8}\right)$	70	Nd	Nd	$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{8}\right)$	55	26	Nd
Standard	67	76	76	PdCl_{2}	63	75	47

*: (\%inhibition); nd: not detected; ${ }^{\ddagger}$: concentration: 50 ppm for Bacillus subtili,Yeast and 100 ppm for E.coli; ${ }^{\dagger}$: concentration: 100 ppm .

Conclusion

In conclusion, synthesis of chloro and bromo complexes of palladium(II) with dihydrobenzoimidazo quinazoline derivatives $\mathrm{L}^{1}-\mathrm{L}^{8}$ were carried out and characterised by various physicochemical techniques. Based on these studies monomeric/dimeric structures with a square planar geometry around the palladium(II) ion have been proposed. Some of the complexes were tested for antimicrobial activity and were found to be moderately active.

References:

[1] M. Islam, P. Mondal, A.S. Roy, K. Tuhina, Trans.Met.Chem., 35(4) (2010) 427.
[2] S. Alexander, V. Udaykumar, N. Nagaraju, V. Gayathri, Trans. Chem., 35(2) (2009) 247.
[3] S. Aizawa, T. Sano, Y. Fujita, J.Organomet. Chem., 693 (2008) 3638.
[4] M. Takani, T. Yajima, H. Masuda, O. Yamauchi, J. Inorg. Biochem., 91(1) (2002)139.
[5] C.Mock, I. Puscasu, M.J. Rauterkus, G. Tallen, J.E.A. Wolff, B. Krebs, Inorg. Chim. Acta, 319(1-2) (2001) 109.
[6] K.V. Vani, G. Ramesh, and C.V. Rao, RSC.Adv.,6 (2016) 61955.
[7] S. Naveen, S.M. Anandalwar, J.S. Prasad, V. Gayathri, R. Bhattacharjee, Anal. Sci., 22 (2006) x185.
[8] S. Naveen, R. Bhattacharjee, V. Gayathri, S. M. Anandalwar, J. S.Prasad, Anal. Sci., 22 (2006) x243-246.
[9] Mahendra, V. Gayathri, K. Jayalakshmi, K.S. Rangappa, S.M. Anandalwar, J. S. Prasad, ActaCryst., E61 (2005) 3249.
[10] S. Naveen, R. Bhattacharjee, V. Gayathri, S.M. Anandalwar, J.S. Prasad, Anal.Sci.,24 (2008) x39-40.
[11] S. Yurdakul., M. Kurt, J. Mol. Struct., 650(1-3) (2003)181-190.
[12] J.R. Durig, W.A. McAllister and E.E. Mercer, J. Inorg. Nucl. Chem., 29(6) (1967) 1441.
[13] A.B.P. Lever, 'Inorganic Electronic Spectroscopy', Elsevier, Amsterdam, 1984.
[14] M. Massacesi, R. Pinna, M. Biddau, G. Ponticelli, Inorg. Chim. Acta, 80 (1983) 151.
[15] M. Biddau, M. Massacesi, G. Ponticelli, Polyhedron, 2(12) (1983) 1261.
[16] G. Coni, M. Massacesi, G. Ponticelli, G. Puggioni, C. Putzolu, Trans.Met.Chem., 12 (1987) 379.
[17] X. Xiaoming, M. Haga, T. Matsumura-Inoue, Yu Ru, A. W. Addison, K. Kano, J.Chem.Soc. Dalton Trans., 16 (1993) 2477.
[18] M.W. Hooper and J.F. Hartwig, Organomet, 22 (2003) 3394.
[19] G. Orellana, C.A. Ibarra and J. Santoro, Inorg. Chem., 27 (1988)1025.
[20] R.M. Silverstein, G.C. Bassler, T.C. Morill, "Spectroscopic identification of organic compounds", $4^{\text {th }} \mathrm{edn}$. John Wiley and sons, 1981.

Table 3: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Pd}(\mathrm{II})$ complexes with $\mathrm{L}^{1}-\mathrm{L}^{5}$ (in ppm).

Compound	Quinazoline						Benzimidazole				R-Group				
Complex	NH	CH	7	8	9	10	2^{\prime}	3'	4^{\prime}	5'	2 "	3"	$4{ }^{\prime \prime}$	5"	$6 "$
(L^{1})	7.62s	7.08s	7.95 d	7.27 m	6.82 t	6.86 d	7.65 d	7.25 m	$\begin{aligned} & 7.18 \\ & \mathrm{~m} \end{aligned}$	7.10 d	7.29 m	7.33 m	7.15 m	7.33 m	7.29 m
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{1}\right)_{1.5}$	14.08 s	7.34 m	8.12d	7.53m	6.87 t	7.04m	7.62m	7.45 t	7.28 m	7.28m	7.34m	7.54m	7.20t	7.34 m	7.34 m
c.i.s	6.46	0.26	0.17	0.26	0.05	0.18	-0.03	-0.02	0.10	0.18	0.05	0.21	0.05	0.01	0.05
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{1}\right) 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$	8.12m	7.32 m	8.12 m	7.52 m	6.92 t	7.02d	7.64 m	7.32 m	7.32 m	7.32 m	7.32m	7.42 m	7.25m	7.42m	7.32 m
c.i.s	0.50	0.24	0.17	0.25	0.10	0.16	-0.01	0.07	0.14	0.22	0.03	0.09	0.10	0.09	0.03
(L^{2})	7.63s	7.54s	7.94d	7.29 t	6.86t	6.94d	7.67d	7.24 m	7.22 m	7.20 m	-	6.34 m	6.36 m	7.46d	-
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{2}\right)$	7.66s	7.60s	8.38 m	7.49 m	6.99 t	7.04d	7.08d	7.50 m	7.50 m	7.44 m	-	6.50 m	6.50 m	7.49 m	-
c.i.s	0.03	0.06	0.44	0.20	0.13	0.10	-0.59	0.26	0.28	0.24	-	0.14	0.20	0.03	-
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{2}\right)$	7.63m	7.59 m	8.70 m	7.59 m	7.36 t	7.10d	8.09d	7.48 m	7.48m	7.48 m	-	6.38 m	6.40 m	7.68 m	-
c.i.s	0.03	0.05	0.76	0.30	0.50	0.10	0.42	0.24	0.26	0.28	-	0.04	0.04	0.22	-
(L^{3})	7.57 s	7.44 s	7.95 d	7.30 t	6.87 t	6.93 d	7.65 d	7.22 m	7.23 m	7.19 m	-	6.34 d	6.34 m	7.47 d	-
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{3}\right) 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$	14.06 s	7.60 m	8.34d	7.63 m	7.36 m	7.36m	7.91d	7.52 m	7.52 m	7.36m	-	7.22 m	7.22 m	7.60 m	-
c.i.s	6.49	0.16	0.39	0.33	0.49	0.43	0.26	0.30	0.29	0.17	-	0.88	0.88	0.13	-
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{3}\right)_{2}$	7.66m	7.47m	8.18m	7.58m	7.18 m	7.10d	7.75 t	7.39 m	7.47 m	7.18m	-	6.93 m	6.93 m	7.66m	-
c.i.s	0.09	0.03	0.23	0.28	0.31	0.17	0.10	0.17	0.24	-0.01	-	0.59	0.59	0.19	-
(L4)	7.26 s	7.09 s	7.96 d	7.26 t	6.64 t	6.68 d	7.66 d	7.06 t	6.87 t	6.90 d	$10.20 \mathrm{~s} \mathrm{OH})$	7.12 m	6.80 t	7.19 m	7.17 m
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{4}\right){ }_{2}$	14.28 s	7.23 m	8.24d	7.64 m	6.90 m	6.90 m	7.97d	7.37 m	7.23 m	7.37 m	10.30 s	7.52m	7.23 m	7.66 m	7.62 m
c.i.s	7.02	0.14	0.28	0.38	0.26	0.22	0.31	0.31	0.36	0.47	0.10	0.40	0.43	0.47	0.45
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{4}\right)_{2}$	7.56s	7.28 m	8.02 m	7.52 m	6.82t	6.92 m	8.02m	7.24 m	6.92 m	7.28 m	10.25 s	7.83d	6.92m	7.43 m	7.43 m
c.i.s	0.30	0.19	0.06	0.26	0.18	0.24	0.36	0.18	0.05	0.38	0.05	0.71	0.12	0.24	0.26
(L5)	7.46 s	6.89 s	7.96 d	7.25 t	6.83 t	6.89 d	7.64d	7.16 t	7.06 t	6.96 d	7.02d	6.75 d	9.66 d OH)	6.74 d	7.20 d
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{5}\right)_{2}$	7.22s	7.08 m	7.96d	7.13 t	6.61 t	6.66 d	7.64 d	7.06 m	6.79 m	7.06m	7.26 m	6.90 m	10.20 s	6.87 m	7.26 m
c.i.s	-0.24	0.14	0.00	-0.12	-0.22	-0.23	0.00	-0.10	-0.27	0.10	0.24	0.15	0.54	0.13	0.06

Table 4: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Pd}(\mathrm{II})$ complexes with $\mathrm{L}^{6}-\mathrm{L}^{8}$ (in ppm).

Compoun	Quinazoline						Benzimidazole				R-Group				
d/ Complex	NH	CH	7	8	9	10	2^{\prime}	3^{\prime}	4^{\prime}	5^{\prime}	2 "	3 "	4"	5"	$6{ }^{\prime \prime}$
(L6)	7.56 s	7.41 s	8.02 d	7.38 t	6.85 m	6.89 m	7.69 d	7.19 t	7.08 t	6.90 m	-	7.58 d	7.26 m	7.24 m	6.97 m
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{6}\right)_{2}$	14.06 s	7.20 m	8.35d	7.53 m	7.20 m	7.20 m	7.93d	7.38 m	7.38 m	7.53 m	-	7.62 m	7.62 m	7.62 m	7.62 m
c.i.s	6.50	-0.21	0.33	0.15	0.35	0.31	0.24	0.19	0.30	0.04	-	0.36	0.38	0.05	0.65
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{6}\right)_{2}$	11.18m	7.00 m	7.99 m	7.35 m	6.88 m	7.00m	7.99 m	7.16m	7.16m	7.35 m	-	7.62m	7.62m	6.62m	7.62 m
c.i.s	3.62	-0.41	-0.03	-0.03	0.03	0.11	0.30	-0.03	0.08	0.45	-	0.04	0.36	-0.62	0.65
(L)	7.69 s	7.16 s	8.20 d	7.27 m	6.86 t	6.91 d	7.71d	7.22 m	7.14 m	7.25 m	7.42 d	7.31	-	7.31 d	7.42 d
$\begin{aligned} & \mathrm{PdCl}_{2}\left(\mathrm{~L}^{7}\right)_{2} . \\ & 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	14.07s	7.21 m	8.35d	7.54 m	7.21 m	7.21 m	7.93d	7.38 m	7.38m	7.54 m	7.63m	7.63m	-	-7.63m	7.63m
c.i.s	6.34	0.05	0.15	0.27	0.35	0.30	0.23	0.16	0.14	0.29	0.21	0.32	-	0.32	0.21
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{7}\right)_{1.5}$	14.07 s	7.41 m	7.87 m	7.87m	7.46m	7.07d	7.87 m	7.46m	7.46m	7.46m	7.58 m	7.66d	-	7.73d	7.58m
c.i.s	6.38	0.25	-0.33	0.60	0.60	0.16	0.16	0.24	0.32	0.21	0.16	0.35	-	0.42	0.16
(L^{8})	7.40 s	6.86 s	7.96 d	7.24 t	6.81 m	6.87 m	7.62 d	7.06 t	7.02 t	7.12 d	7.15 d	6.63 d	$\begin{aligned} & \hline 2.82 \mathrm{~s} \\ & \left(\mathrm{CH}_{3}\right)_{2} \\ & \hline \end{aligned}$	6.63 d	7.15d
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{8}\right)$	14.09 s	7.20 m	7.92m	7.65m	7.20 m	7.00m	7.92m	7.30 t	7.30t	7.46m	7.34 m	6.83 m	1.88 m	6.83m	7.34 m
c.i.s	6.69	0.24	-0.04	0.41	0.39	0.13	0.30	0.24	0.28	0.34	0.19	0.20	-0.94	0.20	0.19
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{8}\right)$	14.08 m	7.20 m	7.93 m	7.66m	7.20 m	7.00m	7.93 m	7.30 m	7.30 m	7.44m	7.35 m	6.83 m	1.89m	6.83 m	7.35 m
c.i.s	6.68	0.34	-0.03	0.42	0.13	0.31	0.24	0.28	-0.02	0.20	0.20	0.20	-0.93	0.20	0.20

Table 5: ${ }^{13} \mathrm{C}$ NMR for the ligands L^{1} to L^{4} and their Pd (II) complexes (in ppm).

Compound/ complex	Quinazoline								Benzimidazole						R-Group					
	2	3	4	7	8	9	10	CH	2^{\prime}	3'	4^{\prime}	5^{\prime}	6^{\prime}	7^{\prime}	$1{ }^{\prime \prime}$	2 "	3"	4"	5"	$6^{\prime \prime}$
(L^{1})	146.80	111.80	143.11	124.59	131.61	118.13	114.76	67.80	118.55	122.13	121.98	110.47	140.31	143.80	132.78	128.88	125.94	128.88	125.94	128.88
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{1}\right)_{1.5}$	146.40	111.42	143.51	124.93	133.73	118.23	114.96	67.93	118.55	124.04	124.04	111.02	139.10	144.36	134.52	128.90	126.05	129.26	125.83	128.90
c.i.s	-0.40	-0.38	2.39	0.34	2.12	0.10	0.20	0.13	0.00	1.91	2.06	-0.45	-1.21	0.56	1.74	0.02	0.11	0.38	-0.11	0.02
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{1}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	146.50	111.84	144.12	125.41	133.72	118.57	115.64	68.12	118.82	124.03	124.03	111.43	139.14	144.28	134.36	128.91	126.23	129.58	125.41	128.91
c.i.s	0.10	0.04	1.01	0.82	2.12	0.44	0.88	-0.32	0.27	1.90	2.05	0.96	-1.17	0.48	1.58	0.03	-0.29	0.70	-0.53	0.03
(L^{2})	147.20	112.29	143.40	125.14	132.19	118.94	110.62	61.83	119.14	122.93	122.83	108.37	132.89	143.74	-	152.36	110.83	110.83	115.42	-
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{2}\right)$	149.65	114.15	140.12	129.07	132.66	119.36	110.83	61.52	119.79	126.35	125.81	109.61	136.08	144.44	-	149.65	112.97	112.37	115.72	-
c.i.s	2.45	1.86	-3.28	3.93	0.47	0.42	0.21	-0.31	0.64	3.42	2.88	1.24	$3 . .9$	0.07	-	2.71	2.14	1.54	0.30	
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{2}\right)$	146.23	109.22	144.35	127.78	130.83	117.90	111.22	61.15	118.69	123.98	123.98	108.51	133.52	143.88	-	150.90	110.39	110.39	115.60	-
c.i.s	-0.978	-3.07	0.95	2.64	-1.36	-1.04	0.60	-0.68	-0.45	1.05	1.15	0.14	0.63	0.14	-	-1.46	-0.44	-0.44	-0.18	-
(L^{3})	149.86	113.71	144.47	125.96	135.98	119.40	114.13	61.89	129.24	126.41	125.22	109.69	131.71	144.77	-	144.35	112.58	104.53	115.79	-
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	147.05	119.88	139.11	126.47	134.51	124.25	122.63	63.51	132.44	129.03	125.04	119.89	133.25	140.21	-	139.11	121.91	112.23	112.88	
c.i.s	-2.81	6.11	-5.36	0.51	-1.47	5.85	8.55	1.62	3.20	2.62	-0.73	1.02	1.54	-4.56	-	-5.24	9.33	7.70	-2.87	-
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{3}\right)_{2}$	143.98	111.36	133.91	124.06	127.10	118.79	116.12	63.65	126.52	124.67	122.59	110.60	127.87	142.05	-	130.66	115.40	104.53	118.28	-
c.i.s	-5.88	-2.35	-10.76	-1.90	-8.88	-0.61	1.99	1.76	-0.72	1.74	-3.18	0.91	-3.84	-2.52	-	-13.69	-6.51	0.00	2.58	-
(L4)	147.24	111.45	143.39	124.47	131.39	118.46	114.66	62.96	119.16	122.01	121.84	110.09	132.78	143.75	129.87	$\begin{aligned} & 154.9 \\ & (\mathrm{OH}) \\ & \hline \end{aligned}$	125.98	117.72	115.74	126.39
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{4}\right)_{2}$	147.15	112.96	140.33	124.29	132.49	119.32	114.31	56.02	119.99	122.93	122.00	112.37	134.66	139.21	129.22	$147 . .81$	124.06	116.70	116.22	126.02
c.i.s	-0.09	1.51	-3.06	-0.81	1.10	0.86	-0.35	6.94	0.38	0.92	0.16	2.28	1.88	-4.54	-0.15	-6.38	-1.92	-1.02	-0.48	-0.37
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{4}\right)_{2}$	154.30	114.06	144.96	124.98	130.96	119.24	114.78	65.48	119.24	123.95	123.95	112.17	135.29	145.26	127.91	155.25	125.64	117.75	116.10	125.36
c.i.s	7.06	2.61	1.57	0.51	-0.43	0.78	0.12	2.52	-0.37	1.94	2.11	2.08	-2.51	1.51	-1.36	0.86	-0.34	0.03	0.36	-1.03

Table6: ${ }^{13} \mathrm{C}$ NMR for the ligands L^{5} toL ${ }^{8}$ and their $\mathrm{Pd}(\mathrm{II})$ complexes (in ppm).

Compoun d/ complex	Quinazoline								Benzimidazole						R-Group					
	2	3	4	7	8	9	10	CH	2^{\prime}	3^{\prime}	4^{\prime}	5^{\prime}	6^{\prime}	7^{\prime}	$1^{\prime \prime}$	$2^{\prime \prime}$	$3^{\prime \prime}$	4 "	5"	$6^{\prime \prime}$
(L^{5})	147.11	111.84	143.56	124.62	131.52	118.02	114.70	68.15	118.55	121.99	121.83	110.70	132.90	143.89	130.52	127.78	115.35	$\begin{aligned} & 159.1 \\ & (\mathrm{OH}) \\ & \hline \end{aligned}$	$\begin{aligned} & 115.3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 127 . \\ & 78 \\ & \hline \end{aligned}$
$\operatorname{PdBr2}\left(\mathrm{L}^{5}\right)^{2}$	143.77	112.82	141.94	125.49	131.82	122.24	122.11	73.77	122.24	123.48	124.34	112.48	133.75	143.77	131.82	129.08	118.32	149.55	$\begin{aligned} & 118.8 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 129 . \\ & 08 \\ & \hline \end{aligned}$
c.i.s	2.66	-0.04	-1.62	0.87	0.30	-4.22	7.71	5.62	3.09	1.57	2.51	1.78	0.85	-0.13	1.30	1.30	2.97	-9.55	3.47	1.30
(L6)	147.14	111.30	142.57	124.66	131.72	118.24	114.86	65.65	118.82	122.40	122.24	109.91	132.61	143.09	136.65	131.31	130.87	128.02	$\begin{aligned} & 127.8 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 . \\ & 65 \\ & \hline \end{aligned}$
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{6}\right) 2$	146.00	112.35	138.69	122.62	129.05	121.90	119.83	56.01	121.90	123.11	123.11	112.35	132.66	140.16	134.40	129.05	126.32	124.50	$\begin{aligned} & 124.5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 126 . \\ & 32 \\ & \hline \end{aligned}$
c.i.s	-1.14	1.05	-3.88	-1.64	-2.67	3.66	4.97	-9.64	3.08	0.71	0.87	2.44	0.05	-3.83	-2.25	-2.26	-4.55	-3.52	-3.33	-3.83
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{6}\right)_{2}$	148.80	110.00	136.20	121.9	131.80	119.00	115.20	64.00	119.00	121.60	121.60	108.80	134.20	139.90	135.20	131.00	126.20	122.40	$\begin{aligned} & 122.4 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 126 . \\ & 20 \\ & \hline \end{aligned}$
c.i.s	1.66	-1.3	-6.37	-2.39	0.08	0.76	0.34	-1.65	0.18	-0.80	-0.64	-1.11	1.59	-4.09	-1.45	-0.31	-4.67	-5.62	-5.42	-3.95
(L^{7})	143.94	111.97	139.40	124.75	132.82	118.40	114.94	67.12	118.79	122.32	122.19	110.43	133.59	142.86	131.73	128.83	127.83	146.85	$\begin{aligned} & 127.9 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 128 . \\ & 83 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{PdCl}_{2}\left(\mathrm{~L}^{7}\right)_{2} . \\ & 2 \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$	140.15	112.36	138.66	124.52	132.67	121.89	119.81	56.03	121.89	123.13	122.61	112.36	134.40	138.66	134.40	129.05	126.35	146.83	$\begin{aligned} & 126.3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 129 . \\ & 05 \\ & \hline \end{aligned}$
c.i.s	-3.79	0.39	-0.74	-0.23	-0.15	3.49	4.87	-11.09	3.10	0.81	0.42	1.93	0.81	-4.22	2.67	0.22	-1.48	0.08	-1.48	0.22
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{\text {J }}\right)_{1.5}$	144.00	112.00	137.62	127.54	134.23	118.73	115.35	67.31	118.73	125.58	125.22	112.00	134.88	144.00	130.30	129.06	128.11	146.00	$\begin{aligned} & \hline 128.1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 129 . \\ & 06 \\ & \hline \end{aligned}$
c.i.s	0.06	0.03	-1.78	2.79	1.41	0.33	0.41	0.19	0.06	3.26	3.03	1.57	1.29	1.12	-1.43	0.23	0.28	-0.85	0.28	0.23
(L^{8})	147.15	110.58	143.61	127.25	131.39	117.88	114.66	68.23	118.46	121.86	121.71	111.88	132.90	143.48	124.57	127.07	111.68	150.75	$\begin{aligned} & 111.8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 127 . \\ & 07 \\ & \hline \end{aligned}$
$\mathrm{PdCl}_{2}\left(\mathrm{~L}^{8}\right)$	145.5	110.89	144.34	130.96	133.34	118.65	118.22	66.92	119.15	123.76	123.61	111.79	134.62	144.40	125.36	127.75	115.60	147.00	$\begin{aligned} & 115.6 \\ & 0 \end{aligned}$	$\begin{aligned} & 126 . \\ & 96 \\ & \hline \end{aligned}$
c.i.s	-1.66	0.30	0.73	3.71	1.95	0.77	3.56	-1.31	0.69	1.90	1.90	-0.09	1.70	11.92	0.79	0.68	3.92	-3.75	3.92	-0.11
$\mathrm{PdBr}_{2}\left(\mathrm{~L}^{8}\right)$	145.5	110.30	143.5	130.66	131.94	117.74	115.45	66.53	117.93	123.68	122.33	110.93	133.40	144.29	124.59	127.50	114.85	146.14	$\begin{aligned} & \hline 114.8 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 126 . \\ & 74 \end{aligned}$
c.i.s	-1.66	-0.28	-0.11	3.41	0.55	-0.14	0.79	-1.70	-0.53	1.82	0.62	-0.95	0.48	11.81	0.02	0.43	3.17	-4.61	2.97	-0.33

C/-2"

[^0]: "Department of Chemistry, Bangalore University, Central College Campus, Bangalore, India; reetabhattacharjee@gmail.com ${ }^{\dagger}$ Department of Chemistry, Bangalore University, Central College Campus, Bangalore, India; gayathritvr@yahoo.co.in

