Further characterizations and Helly-property in k-trees

H. P. Patil ${ }^{*}$

Abstract

The purpose of this paper is to obtain a characterization of k-trees in terms of k-connectivity and forbidden subgraphs. Also, we present the other characterizations of k-trees containing the full vertices by using the join operation. Further, we establish the property of k-trees dealing with the degrees and formulate the Helly-property for a family of nontrivial k-paths in a k-tree. We study the planarity of k trees and express the maximal outerplanar graphs in terms of 2-trees and K_{2}-neighbourhoods. Finally, the similar type of results for the maximal planar graphs are obtained.

Keywords: Trees, Cycles, Paths, Connected graphs, Triangulated graphs, Planar graphs

Mathematics Subject Classification (2010): 05C10

1. Introduction

All graphs considered here are finite and simple.For any graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set, respectively. The order of G is $|V(G)|$ and its size is $|E(G)|$. A graph of order p and size q is a (p, q)-graph. For any two disjoint graphs G and $H, G+H$ denotes the join of G and H. All definitions and notations are not given here may be found in Harary[4]. A graph G is n-connected if the removal of any m vertices for $0 \leq m<n$, from G results in neither a disconnected graph nor a trivial graph. 1-connected graphs are simply the connected graphs. A graph G is triangulated if every cycle of length strictly greater than 3 possesses a chord. Any n mutually adjacent vertices i.e., K_{n} in a graph is n-clique. For any set S of vertices of a graph $G,\langle S\rangle$ denotes the induced subgraph of G induced by S. For

[^0]any connected graph $G, n G$ denotes the graph with n components, each being isomorphic to G.

A family of trees, which are connected and acyclic, can be equivalently defined by the following recursive construction rule:
Step 1. A single vertex K_{1} is a tree.
Step 2. Any tree of order $n \geq 2$, can be constructed from a tree T of order $(n-1)$ by inserting an $n^{t h}$-vertex and joining it to any vertex of T.

More general, the multidimensional-trees can be constructed from the above tree-construction procedure by allowing the base of the recursive growth to be any clique. Notice that a connected graph, which is not a tree possesses a tree-like structure, which is actually reflected by constructing the new family of graphs, whose recursive growth just starts from any given clique K_{k}. This family of graphs are generally known as k-trees or K_{k}-trees or k-dimensional trees.[1, 5, 7, 8]
Definition 1.1. The family of k-trees (or K_{k}-trees) is the set of all graphs that can be obtained by the following recursive construction procedure :

1. A clique- K_{k} is the smallest k-tree.
2. To a k-tree G with $n-1$ vertices for $n \geq k+1$, add a new vertex and make it adjacent to any k mutually adjacent vertices of G, so that the resulting k-tree is of order n.

Figure 1 gives the example of a 3 -tree of order 6 . Generally speaking, every k-tree G of order $\geq k+1$, can be reduced to a clique K_{k}, by sequentially removing the vertices of degree k from G.

2. Properties and Characterizations

We need the following characterization theorem for later use.
Theorem 2.1. [5] Let G be a (p, q)-graph with $p \geq k+1$. Then G is a k tree if and only if G is k-connected, triangulated and either G is K_{k+2}-free or $q=\left(k p-\frac{k(k+1)}{2}\right)$.

The immediate consequence of Theorem 2.1 is another characterization of k-trees in terms of forbidden subgraphs and k-connectivity.
Corollary 2.2. Let G be a graph of order at least $k+1$. Then G is a k-tree if and only if G is k-connected and has no induced subgraph isomorphic to either C_{n} for $n \geq 4$ or K_{k+2}.

We first obtain the basic property of k-trees dealing with degrees. For this, we need to establish the following lemma.
Lemma 2.3. Every k-connected, (p, q)-graph G with $p \geq k+1$ and $q=$ $\left(k p-\frac{k(k+1)}{2}\right)$, has at least $k+1$ vertices, whose degrees do not exceed $2 k-1$.
Proof. Since G is k-connected, deg $v_{i} \geq k$ for all v_{i} in $V(G)$. Let t be the number of vertices in G, whose degrees are at most $2 k-1$. Consequently, G contains $p-t$ vertices of degrees at least $2 k$. Immediately, we have
$\sum_{i=1}^{p} \operatorname{deg} v_{i} \geq t k+(p-t) 2 k$.
On the other hand, by the handshaking theorem, we have

$$
\begin{equation*}
\sum_{i=1}^{p} \operatorname{deg} v_{i}=2 q=2\left(k p-\frac{k(k+1)}{2}\right) . \tag{2}
\end{equation*}
$$

From equations (1) and (2), we have

$$
2 k p-k(k+1) \geq t k+(p-t) 2 k .
$$

This shows that $t \geq k+1$ and hence, G contains at least $k+1$ vertices, whose degrees do not exceed $2 k-1$.

The direct consequence of Lemma 2.3 is the following result. Moreover, for $k=1$, this result extends the property of trees (Corollary 4.1 (a) p.34, [4]).

Corollary 2.4. Every k-tree of order at least $k+1$, has at least $k+1$ vertices, whose degrees do not exceed $2 k-1$.
Proof. Let G be a k-tree of order $p \geq k+1$. By Theorem 2.1, G is a triangulated, k-connected graph of size ($k p-\frac{k(k+1)}{2}$). From Lemma 2.3, the result follows.

Next, we show that the bound given in Corollary 2.4, is the best possible by constructing below a k-tree G with exactly $k+1$ vertices, whose degrees do not exceed $2 k-1$. Let G be a graph consists of $K_{k+1} \cup \overline{K_{k+1}}$, with all the possible additional edges $u_{i} v_{j}$ for $i \neq j$, where u_{i} and v_{j} are the vertices in K_{k+1} and $\overline{K_{k+1}}$, respectively (for $1 \leq i, j \leq$ $k+1$). Now, we observe that G is a k-tree of order $2 k+2$ and it contains $k+1$ vertices of degree k and $k+1$ vertices of degree $2 k$.

Definition 2.5. Let G be a graph of order p. A vertex v in G is called a full-vertex if $\operatorname{deg} v=p-1$.

For example, $K_{k}+\overline{K_{p-k}}($ for $k<p$), is a k-tree of order p, containing exactly k full-vertices. We now obtain a characterization of k-trees containing at least one full-vertex.

Theorem 2.6. Let G be a graph of order $p \geq k+1$. Then G is a k-tree containing a full-vertex if and only if G is isomorphic to $K_{1}+H$, where H is a $(k-1)$-tree of order $p-1$.

Proof. Suppose that G is a k-tree, containing a full-vertex v. By Theorem 2.1, G is a k-connected, triangulated graph of size $\left(k p-\frac{k(k+1)}{2}\right)$. Let $\langle\{v\}\rangle \cong K_{1}$. Since deg $v=p-1$ in G, the removal of v from G certainly reduces its connectivity by one, without affecting its triangularity property and further, we have

$$
|E(G-v)|=\left(k p-\frac{k(k+1)}{2}\right)-(p-1)=(k-1)(p-1)-\frac{k(k-1)}{2} .
$$

From Theorem 2.1, $G-v$ is a $(k-1)$-tree of order $p-1$. However, we see that G is isomorphic to $K_{1}+(G-v)$.

Conversely, assume that G is isomorphic to $K_{1}+H$, where H is a ($k-1$)-tree of order $p-1$. Since $\operatorname{deg} v=p-1$ in G, it follows that H is isomorphic to $G-v$. Consequently, $G=K_{1}+(G-v)$ is a k-connected, triangulated graph of size $\left(k p-\frac{k(k+1)}{2}\right)$. By Theorem 2.1, G is a k-tree.

Repeated application of Theorem 2.6, yields the general criterion for k-trees containing at most k full-vertices.

Corollary 2.7. Let G be a graph of order $p \geq k+1$. Then G is a k-tree containing t full-vertices ($1 \leq t \leq k$) if and only if G is isomorphic to $K_{t}+T_{p-t}$, where T_{p-t} is a $(k-t)$-tree of order $p-t$ and T_{p-k} is a forest.

3. Helly-property on k-paths

We begin with the notion of m-walk for $m \geq 2$, which extends the concept of a walk (i.e., 1 -walk) introduced by Beineke and Pippert.[1]

Definition 3.1. (1). A m-walk for $m \geq 1$, in a graph G, denoted by $W\left(K_{m}^{0}, K_{m}^{n}\right) ; n \geq 0$, is an alternating finite sequence of its distinct cliques K_{m} and K_{m+1} of the form:
($K_{m}^{0}, K_{m+1}^{1}, K_{m}^{1}, K_{m+1}^{2}, \ldots, K_{m}^{n-1}, K_{m+1}^{n}, K_{m}^{n}$), beginning and ending with the cliques K_{m}^{0} and K_{m}^{n}, respectively such that for each $i(1 \leq i \leq n)$, $K_{m+1}^{i}=$ $K_{m}^{i-1} \cup K_{m}^{i}$ and $K_{m}^{i-1} \cap K_{m}^{i}=K_{m-1}$.
(2). A m-walk $W\left(K_{m}^{0}, K_{m}^{n}\right) ; n \geq 0$, is called a m-path if all its cliques
$K_{m}^{0}, K_{m}^{1}, \ldots, K_{m}^{n}$ and $K_{m+1}^{1}, K_{m+1}^{2}, \ldots, K_{m+1}^{n}$ are distinct. The length of a m-path, is the number of occurrences of cliques K_{m+1} in it. For example, any clique K_{m} is a trivial m-path ; K_{m+1} is a nontrivial m-path of length 1; $K_{m}+\overline{K_{2}}$ is a nontrivial m-path of length 2.

In Figure 2, the anatomy of a 2-path is shown.

Let $\Pi=\left\{J_{i}: i \in I\right\}$ be a family of subsets of a finite set S (where I denotes the index set). Then Π is said to satisfy the Helly-property if $J_{i} \cap J_{j} \neq \emptyset$ for all i, j in I, implies that $\cap_{k \in I} J_{k} \neq \emptyset$.

For example, $\Pi=\left\{J_{1}, J_{2}, J_{3}\right\}$, where the nontrivial paths : $J_{1}=$ $a b c ; J_{2}=c b d ; J_{3}=a b d$, of the tree $K_{1,3}$ as shown in Figure 3.

Notice that every two paths in Π have a nontrivial intersection, but there is no common nontrivial path for all three paths in Π.

We now establish the Helly-property for a family of nontrivial k paths of a k-tree.

Figure 3
Proposition 3.2. Let $\Pi=\left\{J_{i}: i \in I\right\}$ be a finite family of nontrivial k-paths of a k-tree. If every three k-paths J_{i}, J_{j}, J_{k} for $i, j, k \in I$, have a nontrivial intersection, then $\cap_{n \in I} J_{n}$ is a nontrivial intersection.

Proof. Let G be a k-tree. We prove the result by induction on the number of nontrivial k-paths of G. Assume that $\cap_{n \in J} J_{n}$ is isomorphic to W,
where $|J|=t<|I| ; J$ is an index set, is a nontrivial k-path of G.
If J_{t+1} has no nontrivial intersection with W, then there exist always three k-paths J_{t+1}, J_{t} and J_{t-1} of G, which have no nontrivial intersection. (In fact, for $k=1$, this fact is illustrated in Figure 4). This is a contradiction to the hypothesis. Hence, the desired property is proved.

4. Planarity and Clique-neighbourhoods

The neighbourhood of a vertex u in a graph G is the set $N(u)$ consisting of all the vertices, which are adjacent to u. A vertex u is simplicial if $N(u)$ induces a clique in G.

Definition 4.1. For any clique K_{p} of a graph G with vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{p}$, the K_{p}-neighbourhood, denoted by $N\left(K_{p}\right)$ is $\cap_{i=1}^{p} N\left(u_{i}\right)$.

Notice that 1-trees (i.e., trees) are obviously planar. The maximal outerplanar graphs are the special class of 2-trees. The triangulated, maximal planar graphs are restricted family of 3-trees. All nontrivial 4-trees (other than K_{4}) and k-trees ($k \geq 5$) are nonplanar. To study (outer)planarity, let us first establish the following lemma.

Lemma 4.2. Let G be a k-tree of order $\geq k+1$. For any clique K_{k} in G, a). $N\left(K_{k}\right) \neq \emptyset$.
b). $N\left(K_{k}\right)$ is an independent set.

Proof. To prove (a), we use the induction on order $p \geq k+1$ of G. If $p=k+1$, then $G=K_{k+1}$. Obviously, $\left|N\left(K_{k}\right)\right|=1$ for any clique K_{k} in G and hence the result is obvious. We assume that the result holds for any $p: k+2 \leq p \leq n$. Let G be a k-tree with $p=n+1$. Then by Definition 1.1, G contains a simplicial vertex u of degree k and $G-u$ is a k-tree of order n. By induction hypothesis, $N\left(K_{k}\right) \neq \emptyset$ for any clique K_{k} in $G-u$. Let $N(u)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $N(u)$ is isomorphic to K_{k}. Consider any clique K_{k}^{i} of G with $V\left(K_{k}^{i}\right)=\{u\} \cup\left(N(u)-\left\{u_{i}\right\}\right)$ for $1 \leq i \leq k$. Immediately, we observe that $N\left(K_{k}^{i}\right)=\left\{u_{i}\right\}$. Thus, $N\left(K_{k}^{i}\right) \neq \emptyset$. By induction, the result follows for all $p \geq k+1$.
To prove (b), if possible, we assume that for some clique K_{k} in G, $N\left(K_{k}\right)$ is not independent. Then G contains at least two vertices u and v in $N\left(K_{k}\right)$ such that u and v are adjacent in G. This shows that $\langle N(u) \cup\{u, v\}\rangle$ is isomorphic to K_{k+2} in G. This is not possible (by Theorem 2.1), because G is a k-tree.

In [5], it is proved that any graph G of order ≥ 3, is maximal outerplanar if and only if G is 2 -connected, triangulated and outerplanar. Next, we present another characterization of a maximal outerplanar graph involving 2 -trees and K_{2}-neighbourhoods.

Proposition 4.3. Let G be a graph of order ≥ 3. Then G is maximal outerplanar if and only if G is a 2 -tree and for any complete graph K_{2} of $G,\left\langle N\left(K_{2}\right)\right\rangle$ is either K_{1} or $2 K_{1}$.

Proof. Suppose that G is maximal outerplanar. Immediately, G is 2 connected, triangulated and outerplanar. Since G is outerplanar, G is K_{4}-free. By Theorem 2.1 with $k=2, G$ is a 2 -tree. On contrary, assume that $\left|N\left(K_{2}\right)\right| \geq 3$ for some complete graph K_{2} of G. Let x, y and z be the vertices in $N\left(K_{2}\right)$. Consequently, $\langle\{u, v, x, y, z\}\rangle$ isomorphic to $K_{2}+3 K_{1}$ appears in G. But $K_{2}+3 K_{1}$ contains a subgraph isomorphic to $K_{2,3}$ and hence G is not outerplanar. This leads to a contradiction. So, $\left|N\left(K_{2}\right)\right| \leq 2$ for each complete graph K_{2} of G. From Lemma 4.1 with $k=2$, we have $\left|N\left(K_{2}\right)\right| \geq 1$ and $\left\langle N\left(K_{2}\right)\right\rangle$ is either K_{1} or $2 K_{1}$. Necessity is thus proved.

It is easy to prove the converse.
The immediate consequence of the above proposition is Corollary 11.9 (a) of [4, p. 107]. Certainly, this bound can be improved for nonouterplanar, 2 -trees.

Corollary 4.4. Every 2-tree other than maximal outerplanar, has at least three vertices of degree 2 .

Proof. Follows from the immediate consequence of Proposition 4.3.

Notice that a maximal planar graph need not be triangulated. For example, $C_{4}+2 K_{1}$ is maximal planar but not triangulated.

Proposition 4.5. Let G be a triangulated graph of order ≥ 4. Then G is maximal planar if and only if G is a 3-tree and for any triangle K_{3} in $G,\left\langle N\left(K_{3}\right)\right\rangle$ is either K_{1} or $2 K_{1}$.

The proof follows on the similar arguments as used in the proof of Proposition 4.3, by using Theorem 2.1 with $k=3$.

The following corollary is the immediate consequence of the above result.

Corollary 4.6. Every nonplanar 3-tree, has at least three vertices of degree 3.

Acknowledgement

The research was supported by UGC-SAP (DRS-II).

References

[1] L. W. Beineke and R. E. Pippert, "Properties and characterizations of k-trees," Mathematica, vol. 18, pp. 141-151, 1971.
[2] M. Borowiecki and H. P. Patil, "On colouring and the chromatic polynomial of k-trees," J. Comb. Inf. and Syst. Sci., vol. 11, pp. 124-128, 1986.
[3] C.Y. Cho, N.Z. Li and S.J. Xu, "On q-trees," J. Graph Theory, vol. 10, pp. 129136, 1986.
[4] F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1969.
[5] H. P. Patil, "On the structure of k-trees," J. Comb. Inf. and Syst. Sci., vol. 11, pp. 57-64, 1986.
[6] H. P. Patil, "A relationship between n-degenerate graphs, uniquely colourable graphs and k-trees," Proc. Symp. on Graph Theory and Combinatorics, Kochi, Kerala, India, 17-19 May 1991, pp. 93-97.
[7] H. P. Patil, "Studies on k-trees and some related topics," Ph.D. dissertation, Univ. Warsaw, Poland, 1984.
[8] D. J. Ross, "On simple characterizations of k-trees," Discrete Math., vol. 7, pp. 317-322, 1974.

[^0]: *Department of Mathematics, Pondicherry University; hpppondy@gmail.com

