Mapana J Sci, 15, 3 (2016), 1-8
ISSN 0975-3303 | https://doi.org/ 10.12723/mjs.38.1

Further characterizations and Helly-property
in k-trees

H. P. Patil*

Abstract

The purpose of this paper is to obtain a characterization of
k-trees in terms of k-connectivity and forbidden subgraphs.
Also, we present the other characterizations of k-trees con-
taining the full vertices by using the join operation. Fur-
ther, we establish the property of k-trees dealing with the
degrees and formulate the Helly-property for a family of
nontrivial k-paths in a k-tree. We study the planarity of k-
trees and express the maximal outerplanar graphs in terms
of 2-trees and K,-neighbourhoods. Finally, the similar type
of results for the maximal planar graphs are obtained.
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1. Introduction

All graphs considered here are finite and simple.For any graph G, let
V(G) and E(G) denote its vertex set and edge set, respectively. The
order of G is |V(G)| and its size is |E(G)|. A graph of order p and
size ¢ is a (p, q)-graph. For any two disjoint graphs G and H, G + H
denotes the join of G and H. All definitions and notations are not
given here may be found in Harary[4]. A graph G is n-connected if
the removal of any m vertices for 0 < m < n, from G results in neither
a disconnected graph nor a trivial graph. 1-connected graphs are
simply the connected graphs. A graph G is triangulated if every cycle
of length strictly greater than 3 possesses a chord. Any n mutually
adjacent vertices i.e., K, in a graph is n-clique. For any set S of vertices
of a graph G, (S) denotes the induced subgraph of G induced by S. For
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any connected graph G, nG denotes the graph with n components,
each being isomorphic to G.

A family of trees, which are connected and acyclic, can be equiva-

lently defined by the following recursive construction rule:

Step 1. A single vertex K is a tree.

Step 2. Any tree of order n > 2, can be constructed from a tree T of
order (n — 1) by inserting an n""-vertex and joining it to any vertex of
T.

More general, the multidimensional-trees can be constructed from
the above tree-construction procedure by allowing the base of the
recursive growth to be any clique. Notice that a connected graph,
which is not a tree possesses a tree-like structure, which is actually
reflected by constructing the new family of graphs, whose recursive
growth just starts from any given clique K;. This family of graphs are
generally known as k-trees or K;-trees or k-dimensional trees.[1, 5, 7,
8]

Definition 1.1. The family of k-trees (or Kj-trees) is the set of all
graphs that can be obtained by the following recursive construction pro-
cedure :

1. A clique-K; is the smallest k-tree.

2. To a k-tree G with n — 1 vertices for n > k + 1, add a new vertex and
make it adjacent to any k mutually adjacent vertices of G, so that the
resulting k-tree is of order n.

Figure 1

Figure 1 gives the example of a 3-tree of order 6. Generally speaking,
every k-tree G of order > k + 1, can be reduced to a clique K;, by
sequentially removing the vertices of degree k from G.

2. Properties and Characterizations

We need the following characterization theorem for later use.

Theorem 2.1. [5] Let G be a (p, q)-graph with p > k+ 1. Then G is a k-

tree if and only if G is k-connected, triangulated and either G is Ky.,-free
_ K(k+1)

orq = (kp - =5-).
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The immediate consequence of Theorem 2.1 is another character-
ization of k-trees in terms of forbidden subgraphs and k-connectivity.

Corollary 2.2. Let G be a graph of order at least k+1. Then G is a k-tree
if and only if G is k-connected and has no induced subgraph isomorphic
to either C, for n > 4 or K;,».

We first obtain the basic property of k-trees dealing with degrees.
For this, we need to establish the following lemma.

Lemma 2.3. Every k-connected, (p, q)-graph G with p > k+ 1 and g =
(kp— @), has at least k+ 1 vertices, whose degrees do not exceed 2k— 1.

Proof. Since G is k-connected, deg v; > k for all v; in V(G). Let ¢ be
the number of vertices in G, whose degrees are at most 2k — 1. Conse-
quently, G contains p — ¢ vertices of degrees at least 2k. Immediately,
we have

J2
Z degv;i>tk+ (p—1) 2k. 1
i=1

On the other hand, by the handshaking theorem, we have

P
1
k(k + ))' @)
=1

degv; =2q =2(kp — >

1

From equations (1) and (2), we have
2kp — k(k + 1) > tk + (p — £)2k.

This shows that ¢ > k + 1 and hence, G contains at least k + 1 vertices,
whose degrees do not exceed 2k — 1. i

The direct consequence of Lemma 2.3 is the following result. More-
over, for k = 1, this result extends the property of trees (Corollary 4.1

(a) p.34, [4]).

Corollary 2.4. Every k-tree of order at least k + 1, has at least k + 1
vertices, whose degrees do not exceed 2k — 1.

Proof. Let G be a k-tree of order p > k + 1. By Theorem 2.1, G is a
triangulated, k-connected graph of size (kp—@). From Lemma 2.3,
the result follows. |

Next, we show that the bound given in Corollary 2.4, is the best
possible by constructing below a k-tree G with exactly k + 1 vertices,
whose degrees do not exceed 2k — 1. Let G be a graph consists of
K1 U Kiy1, with all the possible additional edges u;vj for i # j, where
u; and v; are the vertices in K;.; and K., respectively (for 1 <i, j <
k+1). Now, we observe that G is a k-tree of order 2k+2 and it contains
k + 1 vertices of degree k and k + 1 vertices of degree 2k.
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Definition 2.5. Let G be a graph of order p. A vertex vin G is called a
full-vertex if deg v =p — 1.

For example, Ki+ K, (for k < p), is a k-tree of order p, containing
exactly k full-vertices. We now obtain a characterization of k-trees
containing at least one full-vertex.

Theorem 2.6. Let G be a graph of order p > k+ 1. Then G is a k-tree
containing a full-vertex if and only if G is isomorphic to K, + H, where
H is a (k — 1)-tree of order p — 1.

Proof. Suppose that G is a k-tree, containing a full-vertex v. By The-
orem 2.1, G is a k-connected, triangulated graph of size (kp — @).
Let ({v}) = K;. Since deg v = p — 1 in G, the removal of v from G
certainly reduces its connectivity by one, without affecting its trian-
gularity property and further, we have

k(k + 1)

k(k — 1)
. :

|E(G = )| = (kp - 2

)—(p-D=k-D(p-1)-

From Theorem 2.1, G — v is a (k — 1)-tree of order p — 1. However, we
see that G is isomorphic to K; + (G — v).

Conversely, assume that G is isomorphic to K; + H, where H is
a (k — 1)-tree of order p — 1. Since deg v = p — 1 in G, it follows
that H is isomorphic to G — v. Consequently, G = K| + (G —v) is a
k-connected, triangulated graph of size (kp — @). By Theorem 2.1,
G is a k-tree. O

Repeated application of Theorem 2.6, yields the general criterion
for k-trees containing at most k full-vertices.

Corollary 2.7. Let G be a graph of order p > k + 1. Then G is a k-tree
containing t full-vertices (1 < t < k) if and only if G is isomorphic to
K, +T,_, where T, is a (k — t)-tree of order p —t and T,y is a forest.

3. Helly-property on k-paths

We begin with the notion of m-walk for m > 2, which extends the
concept of a walk (i.e., 1-walk) introduced by Beineke and Pippert.[1]

Definition 3.1. (1). A m-walk for m > 1, in a graph G, denoted by
W(K®,K"); n >0, is an alternating finite sequence of its distinct cliques
K., and K, of the form:

(K. K . Ky K2 .. K5 K", KD, beginning and ending with the
cliques K9, and K}., respectively such that for each i (1 <i<n), K! | =

KUK, and Ki' N KL = K.
(2). A m-walk W(K%,K"); n > 0, is called a m-path if all its cliques
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K).K,.....K} and K} | K2 ,,...,K" | are distinct. The length of a
m-path, is the number of occurrences of cliques K, in it. For example,
any clique K,, is a trivial m-path ; K, is a nontrivial m-path of length

1; K, + K, is a nontrivial m-path of length 2.

In Figure 2, the anatomy of a 2-path is shown.

Figure 2

Let IT = {J; : i € I} be a family of subsets of a finite set S (where I
denotes the index set). Then II is said to satisfy the Helly-property if
JinJ;# 0 for all i, j in I, implies that Ny, Ji # 0.

For example, I1 = {Ji, J>, J3}, where the nontrivial paths : J; =
abc ; Jy = cbd ; J3 = abd, of the tree K, 3 as shown in Figure 3.

Notice that every two paths in IT have a nontrivial intersection,
but there is no common nontrivial path for all three paths in II.

We now establish the Helly-property for a family of nontrivial k-
paths of a k-tree.

® @
d b c

Figure 3

Proposition 3.2. Let I1 = {J; : i € I} be a finite family of nontrivial
k-paths of a k-tree. If every three k-paths J;, J;, Ji for i, jk € I, have a
nontrivial intersection, then N,e;J, is a nontrivial intersection.

Proof. Let G be a k-tree. We prove the result by induction on the num-
ber of nontrivial k-paths of G. Assume that N,;J, is isomorphic to W,
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where |J| =t < |I] ; J is an index set, is a nontrivial k-path of G.

If J,+1 has no nontrivial intersection with W, then there exist always
three k-paths J;,,J; and J,_; of G, which have no nontrivial inter-
section. (In fact, for k = 1, this fact is illustrated in Figure 4). This
is a contradiction to the hypothesis. Hence, the desired property is

proved. m|
Ji
Jo J1
J3
®
Ji-1
Figure 4 J;
Jt t+1 t+1

4. Planarity and Clique-neighbourhoods

The neighbourhood of a vertex u in a graph G is the set N(u) consisting
of all the vertices, which are adjacent to u. A vertex u is simplicial if
N(u) induces a clique in G.

Definition 4.1. For any clique K, of a graph G with vertices u, us, u3, . .., up,
the K,-neighbourhood, denoted by N(K,) is ﬂleN(u,-).

Notice that 1-trees (i.e., trees) are obviously planar. The maximal
outerplanar graphs are the special class of 2-trees. The triangulated,
maximal planar graphs are restricted family of 3-trees. All nontrivial
4-trees (other than K;) and k-trees (k > 5) are nonplanar. To study
(outer)planarity, let us first establish the following lemma.

Lemma 4.2. Let G be a k-tree of order > k + 1. For any clique K; in G,
a). N(Kp) # 0.
b). N(K;) is an independent set.
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Proof. To prove (a), we use the induction on order p > k+ 1 of G. If
p =k+ 1, then G = K. Obviously, [N(K;)| = 1 for any clique K} in G
and hence the result is obvious. We assume that the result holds for
any p : k+2 < p < n. Let G be a k-tree with p = n + 1. Then by
Definition 1.1, G contains a simplicial vertex u of degree k and G — u
is a k-tree of order n. By induction hypothesis, N(K;) # 0 for any
clique K in G — u. Let N(u) = {uy,us,...,u;} and N(u) is isomorphic
to K. Consider any clique K} of G with V(K}) = {u} U (N(u) — {u;}) for
1 <i < k. Immediately, we observe that N(K}) = {u;}. Thus, N(K}) # 0.
By induction, the result follows for all p > k + 1.

To prove (b), if possible, we assume that for some clique K; in G,
N(K;) is not independent. Then G contains at least two vertices u
and v in N(K}) such that u and v are adjacent in G. This shows that
(N(u) U {u,v}) is isomorphic to K, in G. This is not possible (by
Theorem 2.1), because G is a k-tree. O

In [5], it is proved that any graph G of order > 3, is maximal out-
erplanar if and only if G is 2-connected, triangulated and outerplanar.
Next, we present another characterization of a maximal outerplanar
graph involving 2-trees and K,-neighbourhoods.

Proposition 4.3. Let G be a graph of order > 3. Then G is maximal
outerplanar if and only if G is a 2-tree and for any complete graph K,
of G, (N(K»)) is either K, or 2K;.

Proof. Suppose that G is maximal outerplanar. Immediately, G is 2-
connected, triangulated and outerplanar. Since G is outerplanar, G
is K4-free. By Theorem 2.1 with &k = 2, G is a 2-tree. On contrary,
assume that |[N(K3)| > 3 for some complete graph K, of G. Let x,y and
z be the vertices in N(K,). Consequently, ({«, v, x,y, z}) isomorphic to
K>+3K, appears in G. But K, +3K; contains a subgraph isomorphic to
K, 3 and hence G is not outerplanar. This leads to a contradiction. So,
IN(K>)| < 2 for each complete graph K, of G. From Lemma 4.1 with
k = 2, we have [N(K>)| > 1 and (N(K>)) is either K; or 2K;. Necessity
is thus proved.

It is easy to prove the converse. |

The immediate consequence of the above proposition is Corollary
11.9 (a) of [4, p. 107]. Certainly, this bound can be improved for
nonouterplanar, 2-trees.

Corollary 4.4. Every 2-tree other than maximal outerplanar, has at
least three vertices of degree 2.

Proof. Follows from the immediate consequence of Proposition 4.3.
i
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Notice that a maximal planar graph need not be triangulated. For
example, C4 + 2K; is maximal planar but not triangulated.

Proposition 4.5. Let G be a triangulated graph of order > 4. Then G
is maximal planar if and only if G is a 3-tree and for any triangle K in
G, (N(K3)) is either K; or 2K;.

The proof follows on the similar arguments as used in the proof
of Proposition 4.3, by using Theorem 2.1 with k = 3.

The following corollary is the immediate consequence of the above
result.

Corollary 4.6. Every nonplanar 3-tree, has at least three vertices of
degree 3.
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