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Vertex Triangle Free Detour Number of a Graph

S. Sethu Ramalingam∗, I. Keerthi Asir†and S. Athisayanathan‡

Abstract

The x-triangle free detour number dn△ fx (G) of a connected
graph G is the minimum order of its x-triangle free de-
tour sets and any x-triangle free detour set S x ⊆ V of order
dn△ fx (G) is a x-triangle free detour basis of G. A connected
graph of order n with vertex triangle free detour number
n− 1 or n− 2 for every vertex is characterized. Certain gen-
eral properties satisfied by the vertex triangle free detour
sets are studied.
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1. Introduction

The concept of triangle free detour distance was introduced by Keerthi
Asir and Athisayanathan.[3] A path P is called a triangle free path if
no three vertices of P induce a triangle. For vertices u and v in a con-
nected graph G, the triangle free detour distance D△ f (u, v) is the length
of a longest u−v triangle free path in G. A u−v path of length D△ f (u, v)
is called a u− v triangle free detour. The triangle free detour eccentric-
ity e△ f (v) of a vertex in G is the maximum triangle free detour distance
from v to a vertex of G. The triangle free detour radius, rad△ f (G) or
R△ f of G is the minimum triangle free detour eccentricity among the
vertices of G, while the triangle free detour diameter, diam△ f (G) or
D△ f of G is the maximum triangle free detour eccentricity among the
vertices of G.
The concept of triangle free detour number was introduced and stud-
ied by Sethu Ramalingam et al.[6] A set S ⊆ V is called a triangle free
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detour set of G if every vertex of G lies on a triangle free detour joining
a pair of vertices of S . The triangle free detour number dn△ f (G) of G
is the minimum order of its triangle free detour sets and any triangle
free detour set of order dn△ f (G) is called a triangle free detour basis of
G.
The concept of vertex detour number of a graph was introduced and
studied in [4]. For any vertex x in a connected graph G, a set S of ver-
tices of G is an x-detour set if each vertex v of G lies on an x− y detour
in G for some vertex y in S . The minimum cardinality of an x-detour
set of G is defined as the x-detour number of G, denoted by dx(G) or
simply dx. An x-detour set of cardinality dx(G) is called a dx-set of G.
The concept of vertex detour monophonic number of a graph was in-

troduced and studied by Titus and Balakrishnan.[7] A chord of a path
P is an edge joining two non-adjacent vertices of P. A path P is called
monophonic if it is a chordless path. A longest u − v monophonic path
is called an u − v detour monophonic path. For any vertex x in a con-
nected graph G, a set S of vertices of G is an x-detour monophonic set
if each vertex v of G lies on an x− y detour monophonic in G for some
vertex y in S . The minimum cardinality of an x-detour monophonic
set of G is defined as the x-detour monophonic number of G, denoted
by dmx(G) or simply dmx. An x-detour monophonic set of cardinality
dmx(G) is called a dmx-set of G.

The concept of vertex geodetic number of a graph was introduced
and studied by Santhakumaran et al.[5] For any vertex x in a con-
nected graph G, a set S of vertices of G is an x-geodetic set if each
vertex v of G lies on an x − y geodetic in G for some vertex y in S .
The minimum cardinality of an x-geodetic set of G is defined as the
x-geodetic number of G, denoted by gx(G) or simply gx. An x-geodetic
set of cardinality gx(G) is called a gx-set of G. Throughout this paper G
denotes a finite undirected simple connected graph with at least two
vertices. For basic definitions and terminologies, we refer to Char-
trand and Zhang.[1]

The following theorems are useful for the results in this paper.

Theorem 1.1. [2] Let v be a vertex of a connected graph G. The follow-
ing statements are equivalent:
(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every
u − w path.
(iii) There exists a partition of the set of vertices V − {v} into subsets U
and W such that for any vertices u ∈ U and w ∈ W, the vertex v is on
every u − w path.

Theorem 1.2. [6] Every extreme-vertex of a connected graph G belongs
to every triangle free detour set of G.

Theorem 1.3. [6] If T is a tree with k end-vertices, then dn△ f (T ) = k.
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Theorem 1.4. [4] Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x(whether x is end-vertex
or not) belong to every x-detour set.
(ii) No cut vertex of G belongs to any dx-set.

Theorem 1.5. [7] Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x(whether x is end-vertex
or not) belong to every x-detour monophonic set.
(ii) No cut vertex of G belongs to any dmx-set.

Theorem 1.6. [5] Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x (whether x is end-vertex
or not) belong to every x-geodetic set.
(ii) No cut vertex of G belongs to any gx-set.

2. Vertex Triangle Free Detour Number

Let x be a vertex of a connected graph G. A set S x ⊆ V is called an x-
triangle free detour set of G if every vertex v of G lies on a x−y triangle
free detour in G for some vertex y in S x. The vertex triangle free
detour number dn△ fx(G) of G is the minimum order of its x-triangle
free detour sets and any x-triangle free detour set of order dn△ fx(G) is
a vertex triangle free detour basis of G. An x-triangle free detour set
of cardinality dn△ fx(G) is called a dn△ fx-set of G.

Theorem 2.1. For any vertex x in G, x does not belong to any dn△ fx-set
of G.

Proof. Suppose that x belongs to a dn△ fx-set, say S x of G. Since G
is a connected graph with at least two vertices, it follows from the
definition of an x-triangle free detour set that S x contains a vertex v
different from x. Since the vertex x lies on every x − v triangle free
detour in G, it follows that T = S x − {x} is an x-triangle free detour set
of G, which is a contradiction to S x a minimum x-triangle free detour
set of G. �

Example 2.2. For the graph G given in Figure 2.1, a minimum vertex
triangle free detour sets and the vertex triangle free detour numbers are
given in Table 2.1.

x a
b c

d e f

g j k

h i

Figure 2.1: G
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For the graph G given in Figure 2.1, the sets S 1 = {d, f }, S 2 = S 1 ∪ {g},
S 3 = S 2 ∪ {h} and S 4 = S 3 ∪ { j} are minimum x-detour set, minimum
x-triangle free detour set, minimum x-detour monophonic set and min-
imum x-geodetic set respectively and hence dx(G) = 2, dn△ fx(G) = 3,
dmx(G) = 4 and gx(G) = 5. Thus the vertex detour number, vertex tri-
angle free detour number, vertex detour monophonic number and vertex
geodetic number of a graph G are distinct.

Vertex t Minimum dn△ ft -set dn△ ft (G)
x {g, d, f } 3
a {x, g, d, f } 4
b {x, g, d, f } 4
c {x, g, d, f } 4
d {x, g, f } 3
e {x, g, d, f } 4
f {x, g, d} 3
g {x, d, f } 3
h {x, g, d, f } 4
i {x, g, d, f } 4
j {x, g, d, f } 4
k {x, g, d, f } 4

Table 2.1

Remark 2.3. Let x be any vertex of G. Then for any vertex y belongs to
a dn△ fx-set S x of G, the internal vertices of an x − y triangle free detour
may belong to S x. For the graph G given in Figure 2.2, S x = {w, z} is
a dn△ fx-set of G and u belongs to S x is an internal vertex of the x − w
triangle free detour say P: x, u, v,w.

z u

z

x y

v w

Figure 2.2: G

Theorem 2.4. Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x(whether x is end-vertex
or not) belong to every x-triangle free detour set.
(ii) No cut vertex of G belongs to any dn△ fx-set.
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Proof. (i) Let x be any vertex of G. By Theorem 2.1, x does not belong
to any dn△ fx-set. So let v , x be an end-vertex of G. Then v is the
terminal vertex of an x− v triangle free detour and v is not an internal
vertex of any triangle free detour so that v belongs to every x-triangle
free detour set of G.

(ii) Let y be a cut vertex of G. Then by Theorem 1.1, there exists a
partition of the set of vertices V − {y} into subsets U and W such that
for any vertex u ∈ U and w ∈ W, the vertex y is on every u − w path.
Hence, if x ∈ U, then for any vertex w in W, y lies on every x − w path
so that y is an internal vertex of an x − w triangle free detour. Let S x
be any dn△ fx - set of G. Suppose S x ∩W = ϕ. Let w1 ∈ W. Since S x is
an x-triangle free detour set, there exists an element z in S x such that
w1 lies in some x−z triangle free detour P : x = z0, z1, ...,w1, ..., zn = z in
G. Then the x−w1 subpath of P and w1−z subpath of P both contain y
so that P is not a path in G. Hence S x ∩W , ϕ. Let w2 ∈ S x ∩W. Then
y is an internal vertex of an x − w2 triangle free detour. If y ∈ S x, let
S = S x − {y}. It is clear that every vertex that lies on x− y triangle free
detour also lies on an x−w2 triangle free detour. Hence it follows that
S is an x-triangle free detour set of G, which is a contradiction to S x
is a minimum x-triangle free detour set of G. Thus y does not belong
to any dn△ fx-set. Similarly if x ∈ W, y does not belong to any dn△ fx-set.
If x = y, then by Theorem 2.1, y does not belong to any dn△ fx-set. �

Remark 2.5. If x is an end-vertex of G, x does not belong to any dn△ fx-
set by Theorem 2.1.

Corollary 2.6. Let T be a tree with t end-vertices. Then dn△ fx(T ) = t − 1
or dn△ fx(T ) = t according to whether x is an end-vertex or not. In fact, if
W is the set of all end-vertices of T , then W − {x} is the unique dn△ fx-set
of T .

Proof. Let W be the set of all end-vertices of T . It follows from Theo-
rem 2.1 and Theorem 2.4 that W − {x} is the unique dn△ fx-set of T for
any end-vertex x in T and W is the unique dn△ fx-set of T for any cut
vertex x in T . Thus W − {x} is the unique dn△ fx-set of T for any vertex
x in T . �

Theorem 2.7. For any hamiltonian graph G, dn△ fx(G) = 1 for every
vertex x in G.

Proof. Let C be a hamiltonian cycle of G. Let x be any vertex of G and
let y be any adjacent vertex of x in G. Clearly every vertex of G lies
on a triangle free detour joining x and y. Thus dn△ fx(G) = 1 for every
vertex x in G. �

Remark 2.8. The converse of Theorem 2.7 is false. For the graph G
given in Figure 2.3, dn△ fx(G) = 1 for every vertex x in G. But G is not
hamiltonian.
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Figure 2.3: G

The following theorem is an easy consequence of the definition of
the vertex triangle free detour number.

Theorem 2.9. (i) For any path Pn, dn△ fx(Pn) = 1 or dn△ fx(Pn) = 2 ac-
cording as x is an end-vertex or not.
(ii) For any cycle Cn, dn△ fx(Cn) = 1 for every vertex x in Cn.
(iii) For the wheel Wn = K1+Cn−1(n ≥ 5), dn△ fx(Wn) = n−1 or dn△ fx(Wn) =
2 according as x is in K1 or x in Cn−1.
(iv) For every vertex x in G, dn△ fx(K1,m) = m or dn△ fx(Kn,m) = m − 1 if
m ≥ 2.
(v) For any complete graph Kn, dn△ fx(Kn) = n−1 for every vertex x in Kn.
(vi) For every vertex x in G, dn△ fx(Kn,m) = 1 if n = m = 1.

Theorem 2.10. Let G be a connected graph with cut vertices and let S x
be an x-triangle free detour set of G. Then every branch of G contains
an element of S x ∪ {x}.
Proof. Suppose that there is a branch B of G at a cut vertex v such
that B contains no vertex of S x ∪ {x}. Then clearly, x ∈ V − (S x ∪V(B)).
Let u ∈ V(B) − {v}. Since S x is an x-triangle free detour set, there is
an element y ∈ S x such that u lies in some x − y triangle free detour
P : x = u0, u1, ..., u, ..., un = y in G. By Theorem 1.1 the x − u subpath of
P and u − y subpath of P both contain v, and it follows that P is not a
path, contrary to assumption. �

Since every end-block B is a branch of G at some cut-vertex, it
follows by Theorems 2.4 and 2.10 that every dn△ fx-set of G together
with the vertex x contains at least one vertex from B that is not a cut-
vertex. Thus the following corollaries are consequences of Theorem
2.10.

14



Sethu Ramalingam et al. Vertex Triangle Free Detour Number

Corollary 2.11. If G is a connected graph with k end-blocks, then
dn△ fx(G) ≥ k − 1 for every vertex x in G.

Theorem 2.12. For any vertex x in G, 1 ≤ dn△ fx(G) ≤ n − 1.

Proof. It is clear from the definition of dn△ fx-set that dn△ fx(G) ≥ 1.
Also since the vertex x does not belong to any dn△ fx-set, it follows that
dn△ fx(G) ≤ n − 1. �

Remark 2.13. The bounds in Theorem 2.13 are sharp. For the cycle Cn,
dn△ fx(Cn) = 1 for every vertex x in Cn. Also for any path Pn, dn△ fx(Pn) = 1
for any end-vertex x in Pn. For the graph Kn, dn△ fx(Kn) = n − 1 for every
vertex x in Kn.

In the following theorem, we establish the relationship between
the vertex triangle free detour number of a graph of a vertex and the
triangle free detour number of a graph.

Theorem 2.14. For any vertex x in G, 2 ≤ dn△ f (G) ≤dn△ fx(G) + 1.

Proof. A triangle free detour set needs at least two vertices so that
dn△ f (G) ≥ 2. Let x be any vertex of G and let S x be a dn△ fx-set of G.
Then every vertex of G lies on an x − y triangle free detour for some y
in S x. Thus S x ∪ {x} is a triangle free detour set of G. Since dn△ f (G) is
the minimum cardinality of a triangle free detour set, it follows that
dn△ f (G) ≤dn△ fx(G) + 1. �

Remark 2.15. The bound in Theorem 2.14 is sharp. For the complete
graph Kn, dn△ f (Kn) = dn△ fx(Kn) + 1 for every vertex x in Kn.

Theorem 2.16. For any two integers a and b with 2 ≤ a ≤ b + 1, there
exists a connected graph G with dn△ f (G) = a and dn△ fx(G) = b for some
vertex x in G.

Proof. Case 1. 2 ≤ a = b + 1. Let G be any tree with a end-vertices.
By Theorem 1.3, dn△ f (G) = a and by Corollary 2.6, dn△ fx(G) = b for an
end-vertex x in G.
Case 2. 2 ≤ a < b + 1. Let F = (P3 ∪ P2 ∪ (b − a + 1)K1) + K2, where
U = V(P3) = {u1, u2, u3}, W = V(P2) = {w1,w2}, X = V((b − a + 1)K1) =
{x1, x2, ..., xb−a+1} and V(K2) = {x, y}. Let G be the graph obtained from
F by adding a− 1 new vertices z1, z2, ..., za−1 and joining each zi(1 ≤ i ≤
a−1) to u1. The graph G is shown in Figure 2.4. Let Z = {z1, z2, ..., za−1}
be the set of end vertices of G.
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u1 u2
u3
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w1 w2 x1 x2 wb−a+1

Figure 2.4: G

First, we show that dn△ f (G) = a. By Theorem 1.2, every triangle
free detour set of G contains Z. Since Z∪{u1} , V(G), it follows that Z
is not a triangle free detour set of G and so that dn△ f (G) > |Z| = a − 1.
On the other hand, let S = Z ∪ {w1}. Then D△ f (z1,w1) = 7 and for each
i with 1 ≤ i ≤ b − a + 1, the path z1, u1, u2, u3, y, xi, x,w1 is a z1 − w1
triangle free detour in G. Hence S is a triangle free detour set of G
and so dn△ f (G) ≤ |S | = a. Therefore dn△ f (G) = a.

Next we show that dn△ fx(G) = b for the vertex x. Let S x be a
minimum x-triangle free detour set of G. By Theorem 2.5 (i), Z ⊆ S x.
Since D△ f (x, Z) = 6 and no xi(1 ≤ i ≤ b − a + 1) lies on an x − z triangle
free detour for any z ∈ Z, Z is not an x-triangle free detour set of
G. Now we claim that X ⊆ S x. Assume, to the contrary, X < S x.
Then there exists an xi such that xi < S x(1 ≤ i ≤ b − a + 1). Now
this xi does not lie on any x − v triangle free detour for v , xi and
v ∈ S x, this is a contradiction to S x is a x-triangle free detour basis.
Thus X ⊆ S x. It is clear that X ∪ Z is an x-triangle free detour set.
Hence it follows that X ∪ Z is an x-triangle free detour basis so that
dn△ fx(G) = a − 1 + b − a + 1 = b. �

3. Bounds for the Vertex Triangle Free Detour Number of a Graph

Theorem 3.1. For any vertex x in a connected graph G of order n and
a triangle free detour eccentricity e△ f (x), dn△ fx(G) ≤ n − e△ f (x).

Proof. Let x be any vertex of G and v a triangle free detour eccentric
vertex of x. Then D△ f (u, v) = e△ f (x). Let P : x = x0, x1, ..., xk = v be an
x − v triangle free detour in G. Let S = V(G) − {x0, x1, ..., xk−1}. Since
each xi (0 ≤ i ≤ k − 1) lies on an x − v triangle free detour, S is an
x-triangle free detour set of G so that dn△ fx(G) ≤ n − e△ f (x). �

Remark 3.2. The bounds in Theorem 3.1 is sharp. For the cycle Cn,
dn△ fx(Cn) = 1 = n − e△ f (x) for every vertex x in Cn. Also for the graph
G in Figure 3.1, n = 10, e△ f (x7) = 7 and S = {x4, x9, x10} is a dn△ fx7-
set so that dn△ f x7 = 3. Thus dn△ f x7 = n - e△ f (x7). The inequality in
Theorem 3.1 can also be strict. For the same graph G given in Figure 3.1,
e△ f (x3) = 5 and S = {x4, x7, x9, x10} is a dn△ f x3-set so that dn△ f x3(G) = 4.
Thus dn△ f x3(G) < n − e△ f (x3).
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Figure 3.1: G
Corollary 3.3. If G is a connected graph of order n and triangle free
detour diameter D△ f , then dn△ fx(G) ≤ n − D△ f

2 for every vertex x in G.

Proof. Since R△ f ≤ e△ f (x) for every vertex x in G and Theorem 3.1
that dn△ fx(G) ≤ n − D△ f

2 . �

Remark 3.4. The bound in Corollary 3.3 is sharp. For the star K1,n−1(n ≥
3), by Theorem 2.10(iv), dn△ fx(K1,n) = n− 1 = n− D△ f

2 for the cut vertex x
in K1,n−1. Also, the inequality in Corollary 3.3 can be strict. For the star
K1,n−1(n ≥ 3), by Theorem 2.10(iv), dn△ fx(K1,n−1) = n− 2 < n− D△ f

2 for an
end vertex x in K1,n−1.

Theorem 3.5. Let G be a connected graph of order n ≥ 2 and G , K3.
Then G = K1,n−1 if and only if dn△ fx(G) = n − 1 or dn△ fx(G) = n − 2 for
every vertex x of G.

Proof. If G = K1,n−1, then by Theorem 2.10(iv), dn△ fx(G) = n − 1 or
dn△ fx(G) = n − 2 for every vertex x of G. If n = 2, then G = K2 = K1,n−1.
If n = 3, then G = P3 = K1,n−1. Let n ≥ 4. We prove that G is a star.
Suppose G is not a star. If G is a tree, then G has at most n − 2 end-
vertices. By Corollary 2.7, dn△ fx(G) ≤ n− 3 if x is an end-vertex, which
is a contradiction. Now, if G is not a tree. Let c(G) be the length of a
longest cycle, say C in G. If c(G) ≥ 4, then D△ f ≥ 3 so that e△ f (x) ≥ 3
for some vertex x in G. Hence by Theorem 3.1, dn△ fx(G) ≤ n − 3,
which is a contradiction. If c(G) = 3, let u, v,w, u be a triangle in G.
Since n ≥ 4, there exists x ∈ V(G) − {u, v,w} such that x is adjacent to
at least one of u, v,w say xu ∈ E(G). Then x, u, v,w is a path in G so
that e△ f (x) ≥ 3. Then by Theorem 3.1, dn△ fx(G) ≤ n − 3, which is a
contradiction. Thus G is a star. �

Theorem 3.6. Let G be a connected graph of order n ≥ 5. Then
dn△ fx(G) = n − 2 or dn△ fx(G) = n − 3 for every vertex x of G if and
only if G is a double star or K1,n−1 + e.

Proof. It is straightforward to verify that if G is a double star or
K1,n−1 + e, then dn△ fx(G) = n − 2 or dn△ fx(G) = n − 3 for every ver-
tex x of G. For the converse, let G be a connected graph of order n ≥ 5
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such that dn△ fx(G) = n − 2 or dn△ fx(G) = n − 3 for every vertex x of
G. If D△ f ≤ 2, then G is the star K1,n−1 and so by Theorem 2.10 (iv),
dn△ fx(G) = n− 1 for the cut vertex x in G, which is a contradiction. Let
D△ f = 3. If G is a tree, then G is a double star and the result follows
from Corollary 2.7. Assume that G is not a tree. Let c(G) denote the
length of a longest cycle in G. Since D△ f = 3, it follows that c(G) ≤ 4.
We consider two cases.

Case 1. Let c(G) = 4. Let C4 : v1, v2, v3, v4, v1 be a 4-cycle in G. Since
n ≥ 5 and G is connected, there exists a vertex x not on C4 such that x
is adjacent to some vertex, say v1 of C4. Then x, v1, v2, v3, v4 is a path
of length 4 in G so that D△ f ≥ 4, which is a contradiction.

Case 2. Let c(G) = 3. If G contains two or more triangles, then
c(G) = 4 or D△ f ≥ 4, which is a contradiction. Hence G contains an
unique triangle C3 : v1, v2, v3, v1. Now, we prove that there is exactly
one vertex on C3 of degree at least 3. If there are two or more vertices
of C3 having degree 3 or more, then D△ f ≥ 4, which is a contradiction.
Thus exactly one vertex in C3 has degree 3 or more. Since D△ f = 3,
it follows that G = K1,n−1 + e. Now, it follows from Theorem 2.4 and
Theorem 2.10 that dn△ fx(G) = n − 2 or dn△ fx(G) = n − 3 according as
x is a cut vertex or not. If D△ f ≥ 4, then e△ f (x) ≥ 4 for some vertex x
in G. Hence by Theorem 3.1, dn△ fx(G) ≤ n − e△ f (x) ≤ n − 4, which is a
contradiction. �

Remark 3.7. Theorem 3.6 is not true for n = 4. For the graph C4, n = 4
and dn△ fx(G) = 1 = n − 3 for every vertex x in G. However, G is neither
a double star nor K1,n−1 + e.

Theorem 3.8. For every tree T with triangle free detour diameter D△ f ,
dn△ fx(G) = n−D△ f or dn△ fx(G) = n−D△ f + 1 for every vertex x of T if and
only if T is a caterpillar.

Proof. If T be any tree. Let P : u = u0, v1, ..., vD△ f = v be a triangle free
detour diametral path. Let k be the number of end vertices of T and
l be the number of internal vertices of T other than v1, v2, ..., vD△ f−1.
Then D△ f −1+l+k = n. By Corollary 2.6, dn△ fx(T ) = k or dn△ fx(T ) = k−1
for every vertex x of T and so dn△ fx(T ) = n − D△ f − 1 + l or dn△ fx(T ) =
n − D△ f − 1 for every vertex x of T . Hence dn△ fx(T ) = n − D△ f + l or
dn△ fx(T ) = n−D△ f for every vertex x of T if and only if l = 0 if and only
if all the internal vertices of T lie on the triangle free detour diametral
path P if and only if T is a caterpillar. �

Theorem 3.9. For every pair a, b of integers with 1 ≤ a ≤ b, there exists
a connected graph G with dx(G) = a and dn△ fx(G) = b.

18



Sethu Ramalingam et al. Vertex Triangle Free Detour Number

Proof. Case 1. For 1 ≤ a = b, any tree with a end vertices has the
desired properties, by Theorem 2.5 and Corollary 2.7.

Case 2. For 1 ≤ a < b. Let Pi : vi(1 ≤ i ≤ b − a) be a b − a copies
of a path of order 1 and P : x, u1, u2, u3 a path of order 4. Let G be
the graph obtained by joining each vi(1 ≤ i ≤ b − a) in Pi and u1 in
P and u2 in P. Adding a new vertices w1,w2, ...,wa and joining each
wi(1 ≤ i ≤ a) to u3. The resulting graph G of order b + 4 is shown in
Figure 3.2. Let S 1 = {x,w1,w2, ...,wa} be the set of all extreme vertices
of G. It is easily verified that S = S 1 − {x} is a x-detour set of G and so
by Theorem 1.4, dx(G) = |S | = a.

x u1 u2 u3

v1

v2

vb−a

w1

w2

wa

Figure 3.2: G
Next, we show that dn△ fx(G) = b. By Theorem 2.4, every x-triangle

free detour set of G contains S . Clearly, S is not a triangle free detour
set of G. It is easily verified that each vi(1 ≤ i ≤ b − a) must belong to
every x-triangle free detour set of G. Thus T = S ∪ {v1, v2, ..., vb−a} is a
x-triangle free detour set of G, it follows from Theorem 2.4 that T is
a x-triangle free detour basis of G and so dn△ fx(G) = b.

�

Theorem 3.10. For every pair a, b of integers with 1 ≤ a ≤ b, there
exists a connected graph G with dn△ fx(G) = a and dmx(G) = b.

Proof. Case 1. For 1 ≤ a = b, any tree with a end vertices has the
desired properties, by Theorem 2.4 and Corollary 2.6.

Case 2. For 1 ≤ a < b. Let Pi : si, ti(1 ≤ i ≤ b − a) be a b − a copies of a
path of order 2 and P : x, u1, u2, u3 a path of order 4. Let G be the graph
obtained by joining each si(1 ≤ i ≤ b − a) in Pi to u1 in P and joining
each ti(1 ≤ i ≤ b−a) in Pi to u2 in P. Adding a new vertices w1,w2, ...,wa
and joining each wi(1 ≤ i ≤ a) to u3. The resulting graph G of order
2b − a + 4 is shown in Figure 3.3. Let S 1 = {x,w1,w2, ...,wa} be the set
of all extreme vertices of G. It is easily verified that S = S 1 − {x} is a x-
trianlge free detour set of G and so by Theorem 2.4, dn△ fx(G) = |S | = a.
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x u1 u2 u3

s1

s2

sb−a tb−a

t2

t1
w1

w2

wa

Figure 3.3: G
Next, we show that dmx(G) = b. By Theorem 1.5, every x-detour

monophonic set of G contains S . Clearly, S is not a detour mono-
phonic set of G. It is easily verified that each si(1 ≤ i ≤ b − a) or each
ti(1 ≤ i ≤ b − a) must belong to every x-detour monophonic set of
G. Thus T = S ∪ {s1, s2, ..., sb−a} is a x-detour monophonic set of G, it
follows from Theorem 2.5 that T is a x-detour monophonic basis of G
and so dmx(G) = b.

�

Theorem 3.11. For every pair a, b of integers with 1 ≤ a ≤ b, there
exists a connected graph G with dn△ fx(G) = a and gx(G) = b.

Proof. This follows from Theorem 3.10. �

Theorem 3.12. For positive integers a, b and c ≥ 2 with a < b, there
exists a connected graph G with R△ f (G) = a, D△ f (G) = b and dn△ fx(G)
= c or dn△ fx(G) = c − 1 for every vertex x of G.

Proof. If a = 1, then b = 2. Take G = K1,c. Then by Theorem 2.9(iv),
dn△ fx(G) = c or dn△ fx(G) = c− 1 for every vertex x of G. Now, let a ≥ 2.
We construct a graph G with the desired properties as follows.

Let Ca+1 : v1, v2, ..., va+1, v1 be a cycle of order a + 1 and let Pb−a+1 :
u0, u1, ..., ub−a be a path of order b − a + 1. Let H be a graph ob-
tained from Ca+1 and Pb−a+1 by identifying v1 in Ca+1 and u0 in Pb−a+1.
Now, add c− 2 new vertices w1,w2, ...,wc−2 to H by joining each vertex
wi(1 ≤ i ≤ c − 2) to the vertex ub−a−1 and obtain the graph G of Figure
3.4. Now, R△ f = a, D△ f = b and G has c − 1 end vertices.

Case 1. Let a be even. If a = 2, then dn△ fx(G) = c or dn△ fx(G) = c − 1
according as x ∈ {v1, u1, u2, ..., ub−a−1} or x ∈ {v2, v3, ub−a,w1,w2, ...,wc−2}.
If a ≥ 4, then dn△ fx(G) = c or dn△ fx(G) = c − 1 according as x ∈
{v1, v3, v4, ..., va, u1, u2, ..., ub−a−1} or x ∈ {v2, va+1, ub−a,w1,w2, ..,wc−2}.
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Case 2. Let a be odd. If a = 3, then dn△ fx(G) = c or dn△ fx(G) = c− 1 ac-
cording as x ∈ {v1, u1, u2, ..., ub−a−1} or x ∈ {v2, v3, v4, ub−a,w1,w2, ...,wc−2}.
If a ≥ 5, then dn△ fx(G) = c or dn△ fx(G) = c − 1 according as x ∈
{v1, v3, v4, ..., v(a+1)/2, v(a+5)/2, ..., va, u1, u2, ..., ub−a−1} or x ∈ {v2, v(a+3)/2,
va+1, ub−a,w1,w2, ...,wc−2}. Thus dn△ fx(G) = c or dn△ fx(G) = c − 1 for
every vertex x of G.

va

va+1

v1

v2

v3

u1

ub−a−1 ub−a

w1 w2 wc−2

Figure 3.4: G
�

Theorem 3.13. For each triple a, b and n of positive integers with 1 ≤
b ≤ n− a+ 1 and a ≥ 4, there exists a connected graph G of order n with
triangle free detour diameter D△ f = a and dn△ fx(G) = b or dn△ fx(G) =
b − 1 for every vertex x of G.

Proof. Let G be a graph obtained from the cycle Ca : u1, u2, ..., ua, u1 of
order a by (i) adding b− 1 new vertices v1, v2, ..., vb−1 and joining each
vertex vi(1 ≤ i ≤ b − 1) to u1 and (ii) adding n − a − b + 1 new vertices
w1,w2, ...,wn−a−b+1 and joining each vertex wi(1 ≤ i ≤ n − a − b + 1)
to both u1 and u3. The graph G has order n and triangle free detour
diameter a and is shown in Figure 3.5. If b = 1, dn△ fx(G) = b for every
vertex x in G. If b ≥ 2, then we consider two cases.

Case 1. Let a be even. If a = 4, then dn△ fx(G) = b or dn△ fx(G) = b − 1
according as x = u1 or x ∈ {u2, u3, u4, v1, v2, ..., vb−1,w1,w2, ...,wn−a−b+1}.
If a ≥ 6, then dn△ fx(G) = b or dn△ fx(G) = b − 1 according as x ∈
{u1, u2, ..., ua/2, u(a+4)/2, ..., ua−1,w1, ...,wc−a−b+1} or x ∈ {u(a+2)/2, ua, v1, v2,
vb−1}.

Case 2. Let a be odd. Clearly dn△ fx(G) = b or dn△ fx(G) = b−1 according
as x ∈ {u1, u2, u2, ..., ua−1,w1, ...,wn−a−b+1} or x ∈ {ua, v1, v2, ..., vb−1}. Thus
dn△ fx(G) = b or dn△ fx(G) = b − 1 for every vertex x of G. �
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u1

u2

u3

u4

ua

wc−a−b+1w2w1

v1 v2 vb−1

Figure 3.5: G

Theorem 3.14. Let n ≥ 2 be any integer. For 1 ≤ a ≤ n − 1, there exists
a connected graph G with order n and dn△ fx(G) = a or dn△ fx(G) = a − 1
for every vertex x of G.

Proof. For n = 2, G = K2 has the desired properties. For n = 3, G = C3
or P3 has the desired properties according as a = 1 or a = 2. For n ≥ 4,
we consider three cases.

Case 1. Let a = 1. Then G = Cn has the desired properties.

Case 2. Let 2 ≤ a ≤ n− 2. Then n− a+ 1 ≥ 3. The graph G is obtained
from the cycle Cn−a+1 : u1, u2, ..., un−a+1, u1 by adding the a− 1 new ver-
tices v1, v2, ..., va−1 and joining these to u1. The graph G is shown in
Figure 3.6.

Subcase a. Let n − a + 1 be even. If n − a + 1 = 4, then dn△ fx(G) = a
or dn△ fx(G) = a − 1 according as x = u1 or x ∈ {u2, u3, u4, v1, v2, ..., va−1}.
If n − a + 1 ≥ 6, then dn△ fx(G) = a or dn△ fx(G) = a − 1 according as
x ∈ {u1, u3, u4, ..., u(n−a+1)/2, u(n−a+5)/2, ..., un−a} or x ∈ {u2, u(n−a+3)/2, un−a+1,
v1, v2, ..., va−1}.

Subcase b. Let n − a + 1 be odd. If n − a + 1 = 3, then dn△ fx(G) = a
or dn△ fx(G) = a − 1 according as x = u1 or x ∈ {u2, u3, v1, v2, ..., va−1}.
If n − a + 1 ≥ 5, then dn△ fx(G) = a or dn△ fx(G) = a − 1 accord-
ing as x ∈ {u1, u3, u4, ..., un−a} or x ∈ {u2, un−a+1, v1, v2, ..., va−1}. Thus
dn△ fx(G) = a or dn△ fx(G) = a − 1 for every vertex x of G.

Case 3. Let a = n − 1. Then G = K1,n−1 has the desired properties. �
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un−a+1

u1

u2 v1

v2

va−1

Figure 3.6: G

x a b c d e f

g1

g2

gb−a

h1

h2

hc−b

k1

k2

kc−b

l1

l2

ld−c

e

m1

m2

md−c

f

va−1

v2

v1

Figure 3.7: G

Theorem 3.15. For any four positive integers a, b, c and d of with
2 ≤ a ≤ b ≤ c ≤ d, there exists a connected graph G such that dx(G) = a,
dn△ fx(G) = b, dmx(G) = c and gx(G) = d.

Proof. Let 2 ≤ a ≤ b ≤ c ≤ d. Let P : x, a, b, c, d, e, f be a path of order
7 and adding a−1 new vertices v1, v2, v3, v4, ....., va−1 to f . Let Pi : gi(1 ≤
i ≤ b− a) be a b− a copies of K1 and joining each gi(1 ≤ i ≤ b− a) in Pi
to a and b in P. Let P j : h j, k j(1 ≤ j ≤ c−b) be a c−b copies of a path of
length 2 and joining each h j(1 ≤ j ≤ c − b) in P j to b in P and joining
each k j(1 ≤ j ≤ c − b) in P j to c in P. Let Pk : lk,mk(1 ≤ k ≤ d − c) be a
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d − c copies of a path of order 2 and joining each lk(1 ≤ k ≤ d − c) in
Pk to c in P and joining mk(1 ≤ k ≤ d − c) in Pk to e in P. The resulting
graph G is shown in Figure 3.7.

It is easily verify that S 1 = {d, v1, v2, ....., va−1} is a minimum x-
detour set, S 2 = S 1 ∪ {g1, g1, g2, ....., gb−a} is a x-triangle free detour
basis, S 3 = S 2 ∪ {h1, h2, h3, ....., hc−b} is a minimum x-detour mono-
phonic set and S 4 = S 3 ∪ {l1, l2, l2, ....., ld−c} is a minimum x-geodetic
set. Thus dnx(G) = a, dn△ fx(G) = b, dmx(G) = c and gx(G) = d. �
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