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Vertex Triangle Free Detour Number of a Graph
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Abstract

The x-triangle free detour number dn,s(G) of a connected
graph G is the minimum order of its x-triangle free de-
tour sets and any x-triangle free detour set S, C V of order
dn,s,(G) is a x-triangle free detour basis of G. A connected
graph of order n with vertex triangle free detour number
n—1 or n—2 for every vertex is characterized. Certain gen-
eral properties satisfied by the vertex triangle free detour
sets are studied.
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1. Introduction

The concept of triangle free detour distance was introduced by Keerthi
Asir and Athisayanathan.[3] A path P is called a triangle free path if
no three vertices of P induce a triangle. For vertices u and v in a con-
nected graph G, the triangle free detour distance D, ¢(u, v) is the length
of a longest u—v triangle free path in G. A u—v path of length D ¢(u,v)
is called a u —v triangle free detour. The triangle free detour eccentric-
ity e, s(v) of a vertex in G is the maximum triangle free detour distance
from v to a vertex of G. The triangle free detour radius, rad,s(G) or
R, of G is the minimum triangle free detour eccentricity among the
vertices of G, while the triangle free detour diameter, diam,(G) or
D,y of G is the maximum triangle free detour eccentricity among the
vertices of G.

The concept of triangle free detour number was introduced and stud-
ied by Sethu Ramalingam et al.[6] A set S C V is called a triangle free
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detour set of G if every vertex of G lies on a triangle free detour joining
a pair of vertices of S. The triangle free detour number dn,s(G) of G
is the minimum order of its triangle free detour sets and any triangle
free detour set of order dn,¢(G) is called a triangle free detour basis of
G.

The concept of vertex detour number of a graph was introduced and
studied in [4]. For any vertex x in a connected graph G, a set S of ver-
tices of G is an x-detour set if each vertex v of G lies on an x — y detour
in G for some vertex y in §. The minimum cardinality of an x-detour
set of G is defined as the x-detour number of G, denoted by d.(G) or
simply d,. An x-detour set of cardinality d.(G) is called a d,-set of G.
The concept of vertex detour monophonic number of a graph was in-

troduced and studied by Titus and Balakrishnan.[7] A chord of a path
P is an edge joining two non-adjacent vertices of P. A path P is called
monophonic if it is a chordless path. A longest u — v monophonic path
is called an u — v detour monophonic path. For any vertex x in a con-
nected graph G, a set S of vertices of G is an x-detour monophonic set
if each vertex v of G lies on an x —y detour monophonic in G for some
vertex y in §. The minimum cardinality of an x-detour monophonic
set of G is defined as the x-detour monophonic number of G, denoted
by dm,(G) or simply dm,. An x-detour monophonic set of cardinality
dm,(G) is called a dm,-set of G.

The concept of vertex geodetic number of a graph was introduced
and studied by Santhakumaran et al.[5] For any vertex x in a con-
nected graph G, a set S of vertices of G is an x-geodetic set if each
vertex v of G lies on an x — y geodetic in G for some vertex y in S.
The minimum cardinality of an x-geodetic set of G is defined as the
x-geodetic number of G, denoted by g.(G) or simply g,. An x-geodetic
set of cardinality g,(G) is called a g,-set of G. Throughout this paper G
denotes a finite undirected simple connected graph with at least two
vertices. For basic definitions and terminologies, we refer to Char-
trand and Zhang.[1]

The following theorems are useful for the results in this paper.

Theorem 1.1. [2] Let v be a vertex of a connected graph G. The follow-
ing statements are equivalent:

(i) v is a cut vertex of G.

(ii) There exist vertices u and w distinct from v such that v is on every
u — w path.

(iii) There exists a partition of the set of vertices V — {v} into subsets U
and W such that for any vertices u € U and w € W, the vertex v is on
every u — w path.

Theorem 1.2. [6] Every extreme-vertex of a connected graph G belongs
to every triangle free detour set of G.

Theorem 1.3. [6] If T is a tree with k end-vertices, then dn,¢(T) = k.
10
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Theorem 1.4. [4] Let x be any vertex of a connected graph G.

(i) Every end-vertex of G other than the vertex x(whether x is end-vertex
or not) belong to every x-detour set.

(it) No cut vertex of G belongs to any d,-set.

Theorem 1.5. [7] Let x be any vertex of a connected graph G.

(i) Every end-vertex of G other than the vertex x(whether x is end-vertex
or not) belong to every x-detour monophonic set.

(ii) No cut vertex of G belongs to any dm,-set.

Theorem 1.6. [5] Let x be any vertex of a connected graph G.

(i) Every end-vertex of G other than the vertex x (whether x is end-vertex
or not) belong to every x-geodetic set.

(ii) No cut vertex of G belongs to any g,-set.

2. Vertex Triangle Free Detour Number

Let x be a vertex of a connected graph G. A set §, C V is called an x-
triangle free detour set of G if every vertex v of G lies on a x—y triangle
free detour in G for some vertex y in S,. The vertex triangle free
detour number dn,z,(G) of G is the minimum order of its x-triangle
free detour sets and any x-triangle free detour set of order dn, (G) is
a vertex triangle free detour basis of G. An x-triangle free detour set
of cardinality dn, (G) is called a dn, -set of G.

Theorem 2.1. For any vertex x in G, x does not belong to any dn,y,-set
of G.

Proof. Suppose that x belongs to a dn,y-set, say S, of G. Since G
is a connected graph with at least two vertices, it follows from the
definition of an x-triangle free detour set that S, contains a vertex v
different from x. Since the vertex x lies on every x — v triangle free
detour in G, it follows that T = S, — {x} is an x-triangle free detour set
of G, which is a contradiction to S, a minimum x-triangle free detour
set of G. i

Example 2.2. For the graph G given in Figure 2.1, a minimum vertex
triangle free detour sets and the vertex triangle free detour numbers are
given in Table 2.1.

=0
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Figure 2.1: G
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For the graph G given in Figure 2.1, the sets S| = {d, f}, S, = S1 U {g},
S3 =S, U{h}and S4 = S3 U {j} are minimum x-detour set, minimum
x-triangle free detour set, minimum x-detour monophonic set and min-
imum x-geodetic set respectively and hence d(G) = 2, dn,s(G) = 3,
dm,(G) = 4 and g(G) = 5. Thus the vertex detour number, vertex tri-
angle free detour number, vertex detour monophonic number and vertex
geodetic number of a graph G are distinct.

Vertex t+ Minimum dn,-set  dn,;(G)

{g.d, 1}
{x.g.d, f}
{x.g.d, f}
{x.8.d, f}

{x.g f}
{x.g.d, f}

{x, g, d}

=
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AR PRrPLLVWRARLOREREPW

Table 2.1

Remark 2.3. Let x be any vertex of G. Then for any vertex y belongs to
a dnyg-set S of G, the internal vertices of an x — y triangle free detour
may belong to S,. For the graph G given in Figure 2.2, S, = {w,z} is
a dn,y-set of G and u belongs to S, is an internal vertex of the x —w
triangle free detour say P: x,u,v,w.

X y
? w
Z u
Figure 2.2: G

Theorem 2.4. Let x be any vertex of a connected graph G.

(i) Every end-vertex of G other than the vertex x(whether x is end-vertex
or not) belong to every x-triangle free detour set.

(if) No cut vertex of G belongs to any dn, g -set.
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Proof. (i) Let x be any vertex of G. By Theorem 2.1, x does not belong
to any dn,y-set. So let v # x be an end-vertex of G. Then v is the
terminal vertex of an x — v triangle free detour and v is not an internal
vertex of any triangle free detour so that v belongs to every x-triangle
free detour set of G.

(ii) Let y be a cut vertex of G. Then by Theorem 1.1, there exists a
partition of the set of vertices V — {y} into subsets U and W such that
for any vertex u € U and w € W, the vertex y is on every u — w path.
Hence, if x € U, then for any vertex w in W, y lies on every x — w path
so that y is an internal vertex of an x — w triangle free detour. Let S,
be any dn,y, - set of G. Suppose S, "W = ¢. Let w; € W. Since S, is
an x-triangle free detour set, there exists an element z in S, such that
wi lies in some x — z triangle free detour P : x = 29,21, ..., W1, ..., Zp = Z iDl
G. Then the x—w, subpath of P and w, —z subpath of P both contain y
so that P is not a path in G. Hence S, "W # ¢. Let w, € S, N W. Then
y is an internal vertex of an x — w, triangle free detour. If y € S, let
S =8, —{y}. Itis clear that every vertex that lies on x — y triangle free
detour also lies on an x—w; triangle free detour. Hence it follows that
S is an x-triangle free detour set of G, which is a contradiction to S,
is a minimum x-triangle free detour set of G. Thus y does not belong
to any dn,y -set. Similarly if x € W, y does not belong to any dn, -set.
If x = y, then by Theorem 2.1, y does not belong to any dn,y-set. O

Remark 2.5. If x is an end-vertex of G, x does not belong to any dn,y,-
set by Theorem 2.1.

Corollary 2.6. Let T be a tree with t end-vertices. Then dn,s(T) =1t—1
or dn,s(T) = t according to whether x is an end-vertex or not. In fact, if
W is the set of all end-vertices of T, then W — {x} is the unique dn,  -set
of T.

Proof. Let W be the set of all end-vertices of T. It follows from Theo-
rem 2.1 and Theorem 2.4 that W — {x} is the unique dn,s-set of T for
any end-vertex x in 7 and W is the unique dn,y-set of T for any cut
vertex x in 7. Thus W — {x} is the unique dn,s-set of T for any vertex
xinT. O

Theorem 2.7. For any hamiltonian graph G, dn,;(G) = 1 for every
vertex x in G.

Proof. Let C be a hamiltonian cycle of G. Let x be any vertex of G and
let y be any adjacent vertex of x in G. Clearly every vertex of G lies
on a triangle free detour joining x and y. Thus dn,;(G) = 1 for every
vertex x in G. o

Remark 2.8. The converse of Theorem 2.7 is false. For the graph G
given in Figure 2.3, dn,;(G) = 1 for every vertex x in G. But G is not
hamiltonian.

13
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Figure 2.3: G

The following theorem is an easy consequence of the definition of
the vertex triangle free detour number.

Theorem 2.9. (i) For any path P,, dn,s(P,) = 1 or dn,z(P,) = 2 ac-
cording as x is an end-vertex or not.

(if) For any cycle C,, dnas(C,) = 1 for every vertex x in C,,.

(iii) For the wheel W, = K1 +C,,_1(n > 5), dnxz,(W,) = n—1 or dn,s (W,) =
2 according as x is in K, or xin C,_.

(iv) For every vertex x in G, dns(Kim) = m or dnyp (K, ) = m—11if
m=2.

(v) For any complete graph K,, dn,s.(K,) = n—1 for every vertex x in K,.
(vi) For every vertex x in G, dns(Kyn) = 1ifn=m=1.

Theorem 2.10. Let G be a connected graph with cut vertices and let S .
be an x-triangle free detour set of G. Then every branch of G contains
an element of S , U {x}.

Proof. Suppose that there is a branch B of G at a cut vertex v such
that B contains no vertex of §, U {x}. Then clearly, x € V- (S5, U V(B)).
Let u € V(B) — {v}. Since S, is an x-triangle free detour set, there is
an element y € S, such that « lies in some x — y triangle free detour
P:x=uy,uy,..,u,..,u, =yin G. By Theorem 1.1 the x — u subpath of
P and u — y subpath of P both contain v, and it follows that P is not a
path, contrary to assumption. i

Since every end-block B is a branch of G at some cut-vertex, it
follows by Theorems 2.4 and 2.10 that every dn,s-set of G together
with the vertex x contains at least one vertex from B that is not a cut-
vertex. Thus the following corollaries are consequences of Theorem
2.10.

14
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Corollary 2.11. If G is a connected graph with k end-blocks, then
dn,f,(G) > k — 1 for every vertex x in G.

Theorem 2.12. For any vertex xin G, 1 <dn,;(G) <n-—1.

Proof. Tt is clear from the definition of dn,y,-set that dn,s(G) > 1.
Also since the vertex x does not belong to any dn, s, -set, it follows that
dn,s(G) <n-—1. O

Remark 2.13. The bounds in Theorem 2.13 are sharp. For the cycle C,,
dnys(Cy) = 1 for every vertex x in C,. Also for any path P,, dns(P,) = 1
for any end-vertex x in P,. For the graph K,, dn,s(K,) = n—1 for every
vertex x in K,,.

In the following theorem, we establish the relationship between
the vertex triangle free detour number of a graph of a vertex and the
triangle free detour number of a graph.

Theorem 2.14. For any vertex x in G, 2 < dn,s(G) <dn,z(G) + 1.

Proof. A triangle free detour set needs at least two vertices so that
dn,r(G) > 2. Let x be any vertex of G and let S, be a dn,-set of G.
Then every vertex of G lies on an x — y triangle free detour for some y
in S . Thus S, U {x} is a triangle free detour set of G. Since dn,s(G) is
the minimum cardinality of a triangle free detour set, it follows that
dnsr(G) <dn,z(G) + 1. O

Remark 2.15. The bound in Theorem 2.14 is sharp. For the complete
graph K, dnyp(K,) = dn,g (K,) + 1 for every vertex x in K,,.

Theorem 2.16. For any two integers a and b with 2 < a < b + 1, there
exists a connected graph G with dn;;(G) = a and dn,,(G) = b for some
vertex x in G.

Proof. Case 1. 2 < a = b+ 1. Let G be any tree with a end-vertices.
By Theorem 1.3, dn,s(G) = a and by Corollary 2.6, dn,,(G) = b for an
end-vertex x in G. .

Case 2. 2<a<b+1. Let F =(P3UP,U(b-a+ 1K)+ K,, where
U= V(P3) = {u1,uz,uz}, W = V(P2) = {wi,wma}, X = V(b -a+ 1)Ky) =
{x1,x2, ..., Xp_qs1} and V(K;) = {x, y}. Let G be the graph obtained from
F by adding a — 1 new vertices zi, 22, ..., Z,—1 and joining each z;(1 <i <
a—1) to uy. The graph G is shown in Figure 2.4. Let Z = {z,22, ..., Za1}
be the set of end vertices of G.

15
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Figure 2.4: G

First, we show that dn,s(G) = a. By Theorem 1.2, every triangle
free detour set of G contains Z. Since ZU {u;} # V(G), it follows that Z
is not a triangle free detour set of G and so that dn,¢(G) > |Z| = a — 1.
On the other hand, let S = ZU {w,}. Then D,(z;,w;) = 7 and for each
iwith 1 <i < b-a+ 1, the path zj,uy, us, u3,y, x;, x,wy is a z; — wy
triangle free detour in G. Hence S is a triangle free detour set of G
and so dn,s(G) < |S| = a. Therefore dn,¢(G) = a.

Next we show that dn,r(G) = b for the vertex x. Let S, be a
minimum x-triangle free detour set of G. By Theorem 2.5 (i), ZC S.,.
Since D,s(x,Z) = 6 and no x;(1 <i < b—a+ 1) lies on an x — z triangle
free detour for any z € Z, Z is not an x-triangle free detour set of
G. Now we claim that X € §,. Assume, to the contrary, X ¢ S,.
Then there exists an x; such that x; ¢ S,(1 <i <b-a+1). Now
this x; does not lie on any x — v triangle free detour for v # x; and
v € §,, this is a contradiction to S, is a x-triangle free detour basis.
Thus X € S,. Itis clear that X U Z is an x-triangle free detour set.
Hence it follows that X U Z is an x-triangle free detour basis so that

dn,;(G)=a—-1+b—a+1=h. O

3. Bounds for the Vertex Triangle Free Detour Number of a Graph

Theorem 3.1. For any vertex x in a connected graph G of order n and
a triangle free detour eccentricity e,s(x), dnns(G) < n — exzp(x).

Proof. Let x be any vertex of G and v a triangle free detour eccentric
vertex of x. Then D,s(u,v) = exp(x). Let P : x = xo, x1,..., X, = v be an
x — v triangle free detour in G. Let S = V(G) — {xo, x1, ..., Xx_1}. Since
each x; (0 < i < k—1) lies on an x — v triangle free detour, S is an
x-triangle free detour set of G so that dn,7,(G) < n — e, f(x). O

Remark 3.2. The bounds in Theorem 3.1 is sharp. For the cycle C,,
dnar(Cy) = 1 = n — e,p(x) for every vertex x in C,. Also for the graph
G in Figure 3.1, n = 10, exr(x7) = 7 and § = {x4, X9, X190} 1S a dnay,,-
set so that dn,ys,, = 3. Thus dnsry, = n - e p(x7). The inequality in
Theorem 3.1 can also be strict. For the same graph G given in Figure 3.1,
erf(x3) =5 and S = {x4, x7, X9, X10} IS @ dnyyy,-set so that dn,y,,(G) = 4.
Thus dnyf.,(G) < n—enp(x3).

16



Sethu Ramalingam et al. Vertex Triangle Free Detour Number

X1

Figure 3.1: G
Corollary 3.3. If G is a connected graph of order n and triangle free

detour diameter Dy, then dn,;(G) < n — Dz“f for every vertex x in G.

Proof. Since R,y < ens(x) for every vertex x in G and Theorem 3.1
Day

that dn, s (G) < n— —*. O
Remark 3.4. The bound in Corollary 3.3 is sharp. For the star K; ,—1(n >
3), by Theorem 2.10(iv), dn,f(Ky,) =n—1=n- %for the cut vertex x
in K ,-1. Also, the inequality in Corollary 3.3 can be strict. For the star
Ky p-1(n > 3), by Theorem 2.10(iv), dnsf(Kip-1) =n—2<n-— D2Af for an
end vertex x in Ky ,_;.

Theorem 3.5. Let G be a connected graph of order n > 2 and G # K.
Then G = K, if and only if dn,;(G) = n =1 or dn,s(G) = n -2 for
every vertex x of G.

Proof. If G = K ,-1, then by Theorem 2.10(iv), dn,s(G) = n -1 or
dn, s (G) = n—2 for every vertex x of G. If n = 2, then G = K; = K 1.
If n =3, then G = P; = K;,,-1. Let n > 4. We prove that G is a star.
Suppose G is not a star. If G is a tree, then G has at most n — 2 end-
vertices. By Corollary 2.7, dn,r,(G) < n—3 if x is an end-vertex, which
is a contradiction. Now, if G is not a tree. Let ¢(G) be the length of a
longest cycle, say C in G. If ¢(G) > 4, then D, > 3 so that e, ¢(x) > 3
for some vertex x in G. Hence by Theorem 3.1, dn,;(G) < n -3,
which is a contradiction. If ¢(G) = 3, let u,v,w, u be a triangle in G.
Since n > 4, there exists x € V(G) — {u, v, w} such that x is adjacent to
at least one of u,v,w say xu € E(G). Then x,u,v,w is a path in G so
that e,¢(x) > 3. Then by Theorem 3.1, dn,;(G) < n — 3, which is a
contradiction. Thus G is a star. O

Theorem 3.6. Let G be a connected graph of order n > 5. Then

dn,;(G) = n—2 or dn,s(G) = n — 3 for every vertex x of G if and
only if G is a double star or Ky -1 +e.

Proof. 1t is straightforward to verify that if G is a double star or
Ki,-1 + e, then dn,s(G) = n -2 or dn,s(G) = n - 3 for every ver-
tex x of G. For the converse, let G be a connected graph of order n > 5

17
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such that dn,;(G) = n — 2 or dn,s(G) = n — 3 for every vertex x of
G. If D,y <2, then G is the star K;,-; and so by Theorem 2.10 (iv),
dn,r(G) = n—1 for the cut vertex x in G, which is a contradiction. Let
D,y = 3. If G is a tree, then G is a double star and the result follows
from Corollary 2.7. Assume that G is not a tree. Let ¢(G) denote the
length of a longest cycle in G. Since D,y = 3, it follows that ¢(G) < 4.
We consider two cases.

Case 1. Let ¢(G) = 4. Let C4 : vy, v2,v3, V4, v be a 4-cycle in G. Since
n > 5 and G is connected, there exists a vertex x not on C4 such that x
is adjacent to some vertex, say v; of C4. Then x, v, v,,v3,v4 is a path
of length 4 in G so that D,y > 4, which is a contradiction.

Case 2. Let ¢(G) = 3. If G contains two or more triangles, then
c(G) = 4 or D,y > 4, which is a contradiction. Hence G contains an
unique triangle C; : vy, v, v3,v1. Now, we prove that there is exactly
one vertex on C; of degree at least 3. If there are two or more vertices
of C; having degree 3 or more, then D, > 4, which is a contradiction.
Thus exactly one vertex in C; has degree 3 or more. Since D,y = 3,
it follows that G = K ,-; + e. Now, it follows from Theorem 2.4 and
Theorem 2.10 that dn,;(G) = n — 2 or dn,s(G) = n — 3 according as
x is a cut vertex or not. If D, > 4, then e,s(x) > 4 for some vertex x
in G. Hence by Theorem 3.1, dn,;(G) < n—e,s(x) <n—4, whichis a
contradiction. O

Remark 3.7. Theorem 3.6 is not true for n = 4. For the graph C4, n = 4
and dn,s(G) = 1 = n -3 for every vertex x in G. However, G is neither
a double star nor K; ,-1 + e.

Theorem 3.8. For every tree T with triangle free detour diameter Dy,
dnys (G) = n=D,y or dnns(G) = n—D,s + 1 for every vertex x of T if and
only if T is a caterpillar.

Proof. If T be any tree. Let P : u = ug,vi, ..., vp,, = v be a triangle free
detour diametral path. Let k be the number of end vertices of T and
[ be the number of internal vertices of T other than vy, v, ...,vp,, 1.
Then D, s—1+I+k = n. By Corollary 2.6, dn,s(T) = k or dn,s(T) = k—1
for every vertex x of T and so dn,s(T) =n—Dyg— 1 + 1 or dnyg(T) =
n— D, — 1 for every vertex x of T. Hence dn,;(T) = n— D,y + 1 or
dn,s(T) = n— D,y for every vertex x of T if and only if / = 0 if and only
if all the internal vertices of T lie on the triangle free detour diametral
path P if and only if T is a caterpillar. o

Theorem 3.9. For every pair a, b of integers with 1 < a < b, there exists
a connected graph G with d,(G) = a and dn,s(G) = b.

18



Sethu Ramalingam et al. Vertex Triangle Free Detour Number

Proof. Case 1. For 1 < a = b, any tree with a end vertices has the
desired properties, by Theorem 2.5 and Corollary 2.7.

Case 2. For 1 <a<b. Let P, : vi(l <i < b—a)be ab - a copies
of a path of order 1 and P : x,u;,uy,us a path of order 4. Let G be
the graph obtained by joining each v;(1 < i < b -a) in P; and u; in
P and u, in P. Adding a new vertices wy, ws, ..., w, and joining each
wi(1 <i < a) to uz. The resulting graph G of order b + 4 is shown in
Figure 3.2. Let S| = {x, w, wy, ..., w,} be the set of all extreme vertices
of G. It is easily verified that § = S — {x} is a x-detour set of G and so

by Theorem 1.4, d,.(G) = |S| = a.

Vb—-a

=0

uj u

Figure 3.2: G

Next, we show that dn,z,(G) = b. By Theorem 2.4, every x-triangle
free detour set of G contains S. Clearly, S is not a triangle free detour
set of G. It is easily verified that each v;(1 <i < b — a) must belong to
every x-triangle free detour set of G. Thus 7 = S U {v{,v,,...,vp_4} IS @
x-triangle free detour set of G, it follows from Theorem 2.4 that T is

a x-triangle free detour basis of G and so dn,y,(G) = b.
m|

Theorem 3.10. For every pair a, b of integers with 1 < a < b, there
exists a connected graph G with dns(G) = a and dm(G) = b.

Proof. Case 1. For 1 < a = b, any tree with a end vertices has the
desired properties, by Theorem 2.4 and Corollary 2.6.

Case 2. For 1 <a<b. Let P;: s;,t;(1 <i < b—a)beab—acopies of a
path of order 2 and P : x, uy, up, u3 a path of order 4. Let G be the graph
obtained by joining each s,(1 <i < b —a) in P; to u; in P and joining
each (1 <i < b—a)in P; to u, in P. Adding a new vertices wy, wa, ..., W,
and joining each w;(1 < i < a) to uz. The resulting graph G of order
2b — a + 4 is shown in Figure 3.3. Let S| = {x, w, wy, ..., w,} be the set
of all extreme vertices of G. It is easily verified that S = §| — {x} is a x-
trianlge free detour set of G and so by Theorem 2.4, dn, s (G) = |S| = a.
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Figure 3.3: G

Next, we show that dm,(G) = b. By Theorem 1.5, every x-detour
monophonic set of G contains S. Clearly, S is not a detour mono-
phonic set of G. It is easily verified that each s;(1 <i < b — a) or each
ti(1 < i < b — a) must belong to every x-detour monophonic set of
G. Thus T = S U {sy, 52, ..., Sp_4} i @ x-detour monophonic set of G, it
follows from Theorem 2.5 that 7 is a x-detour monophonic basis of G

and so dm,(G) = b.
i

Theorem 3.11. For every pair a, b of integers with 1 < a < b, there
exists a connected graph G with dn,s(G) = a and g(G) = b.

Proof. This follows from Theorem 3.10. |

Theorem 3.12. For positive integers a, b and ¢ > 2 with a < b, there
exists a connected graph G with R,¢(G) = a, D,¢(G) = b and dn,z,(G)
= c or dnss,(G) = ¢ — 1 for every vertex x of G.

Proof. If a = 1, then b = 2. Take G = K; .. Then by Theorem 2.9(iv),
dn, s (G) = c or dn,s(G) = ¢ — 1 for every vertex x of G. Now, let a > 2.
We construct a graph G with the desired properties as follows.

Let Cyy1 : V1, V2,..., Vay1, V1 De a cycle of order a + 1 and let Pp_,4; :
ug, Ui, ..., up—, be a path of order b —a + 1. Let H be a graph ob-
tained from C,,; and P,_,, by identifying v; in C,,; and ug in Py_,41.
Now, add ¢ — 2 new vertices wy, ws, ..., w._» to H by joining each vertex
wi(l <i < c - 2) to the vertex u,_,_; and obtain the graph G of Figure
3.4. Now, R.s = a, D,y = b and G has ¢ — 1 end vertices.

Case 1. Let a be even. If a = 2, then dn,;(G) = c or dn,s(G) = ¢ - 1
according as x € {vy, uy, Uz, ..., Up_q_1} OF X € {V2,V3, Up_g, W1, W2, ..., We_2 ).
If a > 4, then dn,;(G) = c or dn,s(G) = ¢ — 1 according as x €

V1, V3, V4 s Vo, U, U,y ey Up—g1} OF X € {V2, Va1, Up—as W1, W2, o, Wed )

20



Sethu Ramalingam et al. Vertex Triangle Free Detour Number

Case 2. Let a be odd. If a = 3, then dn,;(G) = c or dn,s(G) = c— 1 ac-
cording as x € {vy, uy, Up, ..., Up_q—1} OF X € {V2, V3, Vg, Up_qs W1, W2, oo, We_2 ).
If a > 5, then dn,s(G) = c or dn,s(G) = ¢ — 1 according as x €
V1, V3, Vi ey Var 1)/25 V(a45)/25 -oos Vas UL U2y ooy Up—q—1} OF X € {V2, V(443)/2,
Vatls Up—gs Wi, W2, oo, Wen ). Thus dnyp(G) = ¢ or dny(G) = ¢ — 1 for
every vertex x of G.

Figure 3.4: G

O

Theorem 3.13. For each triple a, b and n of positive integers with 1 <
b<n-a+1anda > 4, there exists a connected graph G of order n with
triangle free detour diameter D,y = a and dn,s(G) = b or dn,;(G) =
b — 1 for every vertex x of G.

Proof. Let G be a graph obtained from the cycle C, : uy, us, ..., uy, u; of
order a by (i) adding b — 1 new vertices vy, vy, ..., vy and joining each
vertex vi(1 <i < b—1)to u; and (ii) adding n — a — b + 1 new vertices
Wi, W2, ..., Wn_a_p+1 and joining each vertex wi(1 < i <n—-a-b+1)
to both u; and u3. The graph G has order n and triangle free detour
diameter a and is shown in Figure 3.5. If b = 1, dn,,(G) = b for every
vertex x in G. If b > 2, then we consider two cases.

Case 1. Let a be even. If a = 4, then dn,7(G) = b or dn,s(G) =b -1
according as x = uy or x € {LQ,M3,M4,V1,V2, vy V1, W1, W2, ---’Wn—a—b+1}-
If a > 6, then dn,;(G) = b or dn,s(G) = b — 1 according as x €

{ur, u, ..., ug 2, Uq+4))25 +--s Ug—15 W15 -2y We—a—b+1} OF X € {M(a+2)/2, Ug, V1, V2,
Vp-1}.

Case 2. Let a be odd. Clearly dn,s,(G) = b or dn,s,(G) = b—1 according
as x € {uy, Uz, U, oo, Ug—1s W1, eoey Wn—a—bs+1} OF X € {Utg, Vi, V2, ...,vp—1}. Thus
dn,f(G) = b or dn,;(G) = b — 1 for every vertex x of G. O
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Figure 3.5: G

Theorem 3.14. Let n > 2 be any integer. For 1 < a < n — 1, there exists
a connected graph G with order n and dn,;(G) = a or dnx(G) =a—1
for every vertex x of G.

Proof. For n =2, G = K, has the desired properties. For n = 3, G = C;
or P; has the desired properties according asa = 1 ora = 2. Forn > 4,
we consider three cases.

Case 1. Let a = 1. Then G = C, has the desired properties.

Case 2. Let2<a<n-2. Thenn-a+1 > 3. The graph G is obtained
from the cycle C,_u41 : ui, ua, ..., uy_qy1, u; by adding the a — 1 new ver-
tices vy, vy, ..., V,_1 and joining these to u;. The graph G is shown in
Figure 3.6.

Subcase a. Letn—a+ 1beeven. If n —a+1 =4, then dn,;(G) = a
or dn,s(G) = a— 1 according as x = u; Or x € {un, u3, us, Vi, V2, ..., Va-1}.
Ifn—a+1 > 6, then dn,;(G) = a or dn,;(G) = a — 1 according as
X € {u1, U3, Ugy ooy U(n—at1)/2> U(n—a+5)/25 -+-» Un—a} OF X € {U2, U(n—a+3)/25 Un—a+1
V1, V2, eeey Vafl}-

Subcase b. Letn —a+1be odd. If n —a+ 1 = 3, then dn,/(G) = a
or dn,s(G) = a — 1 according as x = u; or x € {uy, u3,vi,va, ..., Vg-1}.
Ifn—a+1 > 5, then dn,s(G) = a or dn,;(G) = a — 1 accord-
ing as x € {uy, Uz, ug, ..., Uy_q} O X € {Up, Up_g41> V1> V2s eeer Vacll- Thus
dn,f(G) = a or dn,s(G) = a — 1 for every vertex x of G.

Case 3. Let a = n— 1. Then G = K ,-; has the desired properties. O
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Figure 3.6: G
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Figure 3.7: G

Theorem 3.15. For any four positive integers a, b, ¢ and d of with
2 <a < b < c <d, there exists a connected graph G such that d.(G) = a,
dn,f(G) = b, dm,(G) = c and g(G) = d.

Proof. Let2 <a<b<c<d. LetP: x,a,b,c,d,e, f be a path of order
7 and adding a— 1 new vertices vy, v, V3, V4, ....., Vo_1 tO f. Let P; : g;(1 <
i < b—a)be ab-acopies of K| and joining each g;(1 <i < b—a) in P;
toaand bin P. Let P; : hj, k(1 < j < c—b) be a c—b copies of a path of
length 2 and joining each ;(1 < j < c¢—b) in P, to b in P and joining
eachk(l<j<c-b)inPjtocinP. Let Py : [y,m(1 <k <d-c)bea
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d — ¢ copies of a path of order 2 and joining each /(1 <k < d—c¢) in
Py to ¢ in P and joining my(1 < k < d —c¢) in P, to e in P. The resulting
graph G is shown in Figure 3.7.

It is easily verify that S, = {d,vi,v2,....., vs—1} iS @ minimum x-
detour set, S, = S U {g1,21,82, ..., 8b_a} iS @ x-triangle free detour
basis, S3 = S, U {hy,hy, hs, .....,h._p} is @ minimum x-detour mono-
phonic set and S4 = S3 U {4, 1,1, ....., 15} is @ minimum x-geodetic
set. Thus dn(G) = a, dn,s(G) = b, dn(G) = c and g(G) = d. m]
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