

Mapana J Sci, 15, 3 (2016), 9–24 ISSN 0975-3303 | https://doi.org/ 10.12723/mjs.38.2 Vertex Triangle Free Detour Number of a Graph

S. Sethu Ramalingam, I. Keerthi Asir[†]and S. Athisayanathan[‡]

Abstract

The *x*-triangle free detour number $dn_{\Delta f_x}(G)$ of a connected graph *G* is the minimum order of its *x*-triangle free detour sets and any *x*-triangle free detour set $S_x \subseteq V$ of order $dn_{\Delta f_x}(G)$ is a *x*-triangle free detour basis of *G*. A connected graph of order *n* with vertex triangle free detour number n - 1 or n - 2 for every vertex is characterized. Certain general properties satisfied by the vertex triangle free detour sets are studied.

Keywords: Triangle free detour distance, Triangle free detour number, Vertex triangle free detour set, Vertex triangle free detour number

Mathematics Subject Classification (2010): 05C12

1. Introduction

The concept of *triangle free detour distance* was introduced by Keerthi Asir and Athisayanathan.[3] A path *P* is called a *triangle free path* if no three vertices of *P* induce a triangle. For vertices *u* and *v* in a connected graph *G*, the *triangle free detour distance* $D_{\Delta f}(u, v)$ is the length of a longest u-v triangle free path in *G*. A u-v path of length $D_{\Delta f}(u, v)$ is called a u-v triangle free detour. The triangle free detour eccentricity $e_{\Delta f}(v)$ of a vertex in *G* is the maximum triangle free detour distance from v to a vertex of *G*. The triangle free detour radius, $rad_{\Delta f}(G)$ or $R_{\Delta f}$ of *G* is the minimum triangle free detour diameter, $diam_{\Delta f}(G)$ or $D_{\Delta f}$ of *G* is the maximum triangle free detour eccentricity among the vertices of *G*.

The concept of *triangle free detour number* was introduced and studied by Sethu Ramalingam *et al.*[6] A set $S \subseteq V$ is called a *triangle free*

[‡]St. Xavier's College(Autonomous), Palayamkottai 627002; athisxc@gmail.com

Received: April 2016. Reviewed: May 2016

^{*}St. Xavier's College(Autonomous), Palayamkottai 627002; ssethusxc@gmail.com

[†]St. Xavier's College(Autonomous), Palayamkottai 627002; asirsxc@gmail.com

detour set of *G* if every vertex of *G* lies on a triangle free detour joining a pair of vertices of *S*. The *triangle free detour number* $dn_{\Delta f}(G)$ of *G* is the minimum order of its triangle free detour sets and any triangle free detour set of order $dn_{\Delta f}(G)$ is called a *triangle free detour basis* of *G*.

The concept of *vertex detour number* of a graph was introduced and studied in [4]. For any vertex *x* in a connected graph *G*, a set *S* of vertices of *G* is an *x*-detour set if each vertex *v* of *G* lies on an x - y detour in *G* for some vertex *y* in *S*. The minimum cardinality of an *x*-detour set of *G* is defined as the *x*-detour number of *G*, denoted by $d_x(G)$ or simply d_x . An *x*-detour set of cardinality $d_x(G)$ is called a d_x -set of *G*. The concept of *vertex detour monophonic number* of a graph was in-

troduced and studied by Titus and Balakrishnan.[7] A *chord* of a path *P* is an edge joining two non-adjacent vertices of *P*. A path *P* is called *monophonic* if it is a chordless path. A longest u - v monophonic path is called an u - v detour monophonic path. For any vertex *x* in a connected graph *G*, a set *S* of vertices of *G* is an *x*-detour monophonic set if each vertex *v* of *G* lies on an x - y detour monophonic in *G* for some vertex *y* in *S*. The minimum cardinality of an *x*-detour monophonic set of *G* is defined as the *x*-detour monophonic number of *G*, denoted by $dm_x(G)$ or simply dm_x . An *x*-detour monophonic set of cardinality $dm_x(G)$ is called a dm_x -set of *G*.

The concept of *vertex geodetic number* of a graph was introduced and studied by Santhakumaran *et al.*[5] For any vertex *x* in a connected graph *G*, a set *S* of vertices of *G* is an *x*-geodetic set if each vertex *v* of *G* lies on an x - y geodetic in *G* for some vertex *y* in *S*. The minimum cardinality of an *x*-geodetic set of *G* is defined as the *x*-geodetic number of *G*, denoted by $g_x(G)$ or simply g_x . An *x*-geodetic set of cardinality $g_x(G)$ is called a g_x -set of *G*. Throughout this paper *G* denotes a finite undirected simple connected graph with at least two vertices. For basic definitions and terminologies, we refer to Chartrand and Zhang.[1]

The following theorems are useful for the results in this paper.

Theorem 1.1. [2] Let v be a vertex of a connected graph G. The following statements are equivalent:

(i) v is a cut vertex of G.

(ii) There exist vertices u and w distinct from v such that v is on every u - w path.

(iii) There exists a partition of the set of vertices $V - \{v\}$ into subsets U and W such that for any vertices $u \in U$ and $w \in W$, the vertex v is on every u - w path.

Theorem 1.2. [6] Every extreme-vertex of a connected graph G belongs to every triangle free detour set of G.

Theorem 1.3. [6] If T is a tree with k end-vertices, then $dn_{\Delta f}(T) = k$.

Sethu Ramalingam *et al*.

Theorem 1.4. [4] Let x be any vertex of a connected graph G. (*i*) Every end-vertex of G other than the vertex x(whether x is end-vertex or not) belong to every x-detour set. (*ii*) No cut vertex of G belongs to any d_x -set.

Theorem 1.5. [7] Let x be any vertex of a connected graph G. (*i*) Every end-vertex of G other than the vertex x(whether x is end-vertex or not) belong to every x-detour monophonic set. (*ii*) No cut vertex of G belongs to any dm_x -set.

Theorem 1.6. [5] Let x be any vertex of a connected graph G. (*i*) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belong to every x-geodetic set. (*ii*) No cut vertex of G belongs to any g_x -set.

2. Vertex Triangle Free Detour Number

Let *x* be a vertex of a connected graph *G*. A set $S_x \subseteq V$ is called an *x*-triangle free detour set of *G* if every vertex *v* of *G* lies on a x-y triangle free detour in *G* for some vertex *y* in S_x . The vertex triangle free detour number $dn_{\Delta f_x}(G)$ of *G* is the minimum order of its *x*-triangle free detour sets and any *x*-triangle free detour set of order $dn_{\Delta f_x}(G)$ is a vertex triangle free detour basis of *G*. An *x*-triangle free detour set of cardinality $dn_{\Delta f_x}(G)$ is called a $dn_{\Delta f_x}$ -set of *G*.

Theorem 2.1. For any vertex x in G, x does not belong to any $dn_{\Delta f_x}$ -set of G.

Proof. Suppose that *x* belongs to a $dn_{\Delta f_x}$ -set, say S_x of *G*. Since *G* is a connected graph with at least two vertices, it follows from the definition of an *x*-triangle free detour set that S_x contains a vertex *v* different from *x*. Since the vertex *x* lies on every x - v triangle free detour in *G*, it follows that $T = S_x - \{x\}$ is an *x*-triangle free detour set of *G*, which is a contradiction to S_x a minimum *x*-triangle free detour set of *G*.

Example 2.2. For the graph G given in Figure 2.1, a minimum vertex triangle free detour sets and the vertex triangle free detour numbers are given in Table 2.1.

Figure 2.1: G

For the graph *G* given in Figure 2.1, the sets $S_1 = \{d, f\}$, $S_2 = S_1 \cup \{g\}$, $S_3 = S_2 \cup \{h\}$ and $S_4 = S_3 \cup \{j\}$ are minimum *x*-detour set, minimum *x*-triangle free detour set, minimum *x*-detour monophonic set and minimum *x*-geodetic set respectively and hence $d_x(G) = 2$, $dn_{\Delta f_x}(G) = 3$, $dm_x(G) = 4$ and $g_x(G) = 5$. Thus the vertex detour number, vertex triangle free detour number, vertex detour monophonic number and vertex geodetic number of a graph *G* are distinct.

Vortov t	Minimum dr. cot	dn (C)
vertex i	winning $an_{\Delta f_t}$ -set	$an_{\Delta f_t}(\mathbf{G})$
X	$\{g, d, f\}$	3
a	$\{x, g, d, f\}$	4
b	$\{x, g, d, f\}$	4
С	$\{x, g, d, f\}$	4
d	$\{x, g, f\}$	3
е	$\{x, g, d, f\}$	4
f	$\{x, g, d\}$	3
g	$\{x, d, f\}$	3
h	$\{x, g, d, f\}$	4
i	$\{x, g, d, f\}$	4
j	$\{x, g, d, f\}$	4
k	$\{x, g, d, f\}$	4

Table 2.1

Remark 2.3. Let x be any vertex of G. Then for any vertex y belongs to a $dn_{\Delta f_x}$ -set S_x of G, the internal vertices of an x - y triangle free detour may belong to S_x . For the graph G given in Figure 2.2, $S_x = \{w, z\}$ is a $dn_{\Delta f_x}$ -set of G and u belongs to S_x is an internal vertex of the x - w triangle free detour say P: x, u, v, w.

Figure 2.2: G

Theorem 2.4. Let *x* be any vertex of a connected graph *G*. (*i*) Every end-vertex of *G* other than the vertex *x*(whether *x* is end-vertex or not) belong to every *x*-triangle free detour set. (*ii*) No cut vertex of *G* belongs to any $dn_{\Delta f_x}$ -set. *Proof.* (*i*) Let *x* be any vertex of *G*. By Theorem 2.1, *x* does not belong to any $dn_{\Delta f_x}$ -set. So let $v \neq x$ be an end-vertex of *G*. Then *v* is the terminal vertex of an x - v triangle free detour and *v* is not an internal vertex of any triangle free detour so that *v* belongs to every *x*-triangle free detour set of *G*.

(*ii*) Let y be a cut vertex of G. Then by Theorem 1.1, there exists a partition of the set of vertices $V - \{y\}$ into subsets U and W such that for any vertex $u \in U$ and $w \in W$, the vertex y is on every u - w path. Hence, if $x \in U$, then for any vertex w in W, y lies on every x - w path so that y is an internal vertex of an x - w triangle free detour. Let S_x be any $dn_{\Delta f_x}$ - set of G. Suppose $S_x \cap W = \phi$. Let $w_1 \in W$. Since S_x is an x-triangle free detour set, there exists an element z in S_x such that w_1 lies in some x - z triangle free detour $P : x = z_0, z_1, ..., w_1, ..., z_n = z$ in G. Then the $x - w_1$ subpath of P and $w_1 - z$ subpath of P both contain y so that *P* is not a path in *G*. Hence $S_x \cap W \neq \phi$. Let $w_2 \in S_x \cap W$. Then y is an internal vertex of an $x - w_2$ triangle free detour. If $y \in S_x$, let $S = S_x - \{y\}$. It is clear that every vertex that lies on x - y triangle free detour also lies on an $x - w_2$ triangle free detour. Hence it follows that S is an x-triangle free detour set of G, which is a contradiction to S_x is a minimum *x*-triangle free detour set of *G*. Thus *y* does not belong to any $dn_{\Delta f_x}$ -set. Similarly if $x \in W$, y does not belong to any $dn_{\Delta f_x}$ -set. If x = y, then by Theorem 2.1, y does not belong to any $dn_{\wedge f_x}$ -set.

Remark 2.5. If x is an end-vertex of G, x does not belong to any $dn_{\Delta f_x}$ -set by Theorem 2.1.

Corollary 2.6. Let *T* be a tree with *t* end-vertices. Then $dn_{\Delta f_x}(T) = t - 1$ or $dn_{\Delta f_x}(T) = t$ according to whether *x* is an end-vertex or not. In fact, if *W* is the set of all end-vertices of *T*, then $W - \{x\}$ is the unique $dn_{\Delta f_x}$ -set of *T*.

Proof. Let *W* be the set of all end-vertices of *T*. It follows from Theorem 2.1 and Theorem 2.4 that $W - \{x\}$ is the unique $dn_{\Delta f_x}$ -set of *T* for any end-vertex *x* in *T* and *W* is the unique $dn_{\Delta f_x}$ -set of *T* for any cut vertex *x* in *T*. Thus $W - \{x\}$ is the unique $dn_{\Delta f_x}$ -set of *T* for any vertex *x* in *T*.

Theorem 2.7. For any hamiltonian graph G, $dn_{\triangle f_x}(G) = 1$ for every vertex x in G.

Proof. Let *C* be a hamiltonian cycle of *G*. Let *x* be any vertex of *G* and let *y* be any adjacent vertex of *x* in *G*. Clearly every vertex of *G* lies on a triangle free detour joining *x* and *y*. Thus $dn_{\triangle f_x}(G) = 1$ for every vertex *x* in *G*.

Remark 2.8. The converse of Theorem 2.7 is false. For the graph G given in Figure 2.3, $dn_{\Delta f_x}(G) = 1$ for every vertex x in G. But G is not hamiltonian.

Figure 2.3: G

The following theorem is an easy consequence of the definition of the vertex triangle free detour number.

Theorem 2.9. (*i*) For any path P_n , $dn_{\Delta f_x}(P_n) = 1$ or $dn_{\Delta f_x}(P_n) = 2$ according as *x* is an end-vertex or not.

(*ii*) For any cycle C_n , $dn_{\Delta f_x}(C_n) = 1$ for every vertex x in C_n .

(iii) For the wheel $W_n = K_1 + C_{n-1}$ $(n \ge 5)$, $dn_{\triangle f_x}(W_n) = n-1$ or $dn_{\triangle f_x}(W_n) = 2$ according as x is in K_1 or x in C_{n-1} .

(iv) For every vertex x in G, $dn_{\triangle f_x}(K_{1,m}) = m$ or $dn_{\triangle f_x}(K_{n,m}) = m - 1$ if $m \ge 2$.

(v) For any complete graph K_n , $dn_{\Delta f_x}(K_n) = n - 1$ for every vertex x in K_n . (vi) For every vertex x in G, $dn_{\Delta f_x}(K_{n,m}) = 1$ if n = m = 1.

Theorem 2.10. Let *G* be a connected graph with cut vertices and let S_x be an *x*-triangle free detour set of *G*. Then every branch of *G* contains an element of $S_x \cup \{x\}$.

Proof. Suppose that there is a branch *B* of *G* at a cut vertex *v* such that *B* contains no vertex of $S_x \cup \{x\}$. Then clearly, $x \in V - (S_x \cup V(B))$. Let $u \in V(B) - \{v\}$. Since S_x is an *x*-triangle free detour set, there is an element $y \in S_x$ such that *u* lies in some x - y triangle free detour $P : x = u_0, u_1, ..., u_n = y$ in *G*. By Theorem 1.1 the x - u subpath of *P* and u - y subpath of *P* both contain *v*, and it follows that *P* is not a path, contrary to assumption.

Since every end-block *B* is a branch of *G* at some cut-vertex, it follows by Theorems 2.4 and 2.10 that every $dn_{\Delta f_x}$ -set of *G* together with the vertex *x* contains at least one vertex from *B* that is not a cut-vertex. Thus the following corollaries are consequences of Theorem 2.10.

Corollary 2.11. If G is a connected graph with k end-blocks, then $dn_{\Delta f_x}(G) \ge k - 1$ for every vertex x in G.

Theorem 2.12. For any vertex x in G, $1 \le dn_{\triangle f_x}(G) \le n-1$.

Proof. It is clear from the definition of $dn_{\Delta f_x}$ -set that $dn_{\Delta f_x}(G) \ge 1$. Also since the vertex *x* does not belong to any $dn_{\Delta f_x}$ -set, it follows that $dn_{\Delta f_x}(G) \le n-1$.

Remark 2.13. The bounds in Theorem 2.13 are sharp. For the cycle C_n , $dn_{\Delta f_x}(C_n) = 1$ for every vertex x in C_n . Also for any path P_n , $dn_{\Delta f_x}(P_n) = 1$ for any end-vertex x in P_n . For the graph K_n , $dn_{\Delta f_x}(K_n) = n - 1$ for every vertex x in K_n .

In the following theorem, we establish the relationship between the vertex triangle free detour number of a graph of a vertex and the triangle free detour number of a graph.

Theorem 2.14. For any vertex x in G, $2 \le dn_{\Delta f}(G) \le dn_{\Delta f_x}(G) + 1$.

Proof. A triangle free detour set needs at least two vertices so that $dn_{\Delta f}(G) \ge 2$. Let *x* be any vertex of *G* and let S_x be a $dn_{\Delta f_x}$ -set of *G*. Then every vertex of *G* lies on an x - y triangle free detour for some *y* in S_x . Thus $S_x \cup \{x\}$ is a triangle free detour set of *G*. Since $dn_{\Delta f}(G)$ is the minimum cardinality of a triangle free detour set, it follows that $dn_{\Delta f}(G) \le dn_{\Delta f_x}(G) + 1$.

Remark 2.15. The bound in Theorem 2.14 is sharp. For the complete graph K_n , $dn_{\Delta f}(K_n) = dn_{\Delta f_x}(K_n) + 1$ for every vertex x in K_n .

Theorem 2.16. For any two integers *a* and *b* with $2 \le a \le b + 1$, there exists a connected graph *G* with $dn_{\triangle f}(G) = a$ and $dn_{\triangle f_x}(G) = b$ for some vertex *x* in *G*.

Proof. **Case 1.** $2 \le a = b + 1$. Let *G* be any tree with *a* end-vertices. By Theorem 1.3, $dn_{\triangle f}(G) = a$ and by Corollary 2.6, $dn_{\triangle f_x}(G) = b$ for an end-vertex *x* in *G*.

Case 2. $2 \le a < b + 1$. Let $F = (P_3 \cup P_2 \cup (b - a + 1)K_1) + \overline{K_2}$, where $U = V(P_3) = \{u_1, u_2, u_3\}, W = V(P_2) = \{w_1, w_2\}, X = V((b - a + 1)K_1) = \{x_1, x_2, ..., x_{b-a+1}\}$ and $V(\overline{K_2}) = \{x, y\}$. Let *G* be the graph obtained from *F* by adding *a* - 1 new vertices $z_1, z_2, ..., z_{a-1}$ and joining each $z_i(1 \le i \le a - 1)$ to u_1 . The graph *G* is shown in Figure 2.4. Let $Z = \{z_1, z_2, ..., z_{a-1}\}$ be the set of end vertices of *G*.

Figure 2.4: G

First, we show that $dn_{\Delta f}(G) = a$. By Theorem 1.2, every triangle free detour set of *G* contains *Z*. Since $Z \cup \{u_1\} \neq V(G)$, it follows that *Z* is not a triangle free detour set of *G* and so that $dn_{\Delta f}(G) > |Z| = a - 1$. On the other hand, let $S = Z \cup \{w_1\}$. Then $D_{\Delta f}(z_1, w_1) = 7$ and for each *i* with $1 \leq i \leq b - a + 1$, the path $z_1, u_1, u_2, u_3, y, x_i, x, w_1$ is a $z_1 - w_1$ triangle free detour in *G*. Hence *S* is a triangle free detour set of *G* and so $dn_{\Delta f}(G) \leq |S| = a$. Therefore $dn_{\Delta f}(G) = a$.

Next we show that $dn_{\Delta f_x}(G) = b$ for the vertex x. Let S_x be a minimum x-triangle free detour set of G. By Theorem 2.5 (i), $Z \subseteq S_x$. Since $D_{\Delta f}(x, Z) = 6$ and no $x_i(1 \le i \le b - a + 1)$ lies on an x - z triangle free detour for any $z \in Z$, Z is not an x-triangle free detour set of G. Now we claim that $X \subseteq S_x$. Assume, to the contrary, $X \notin S_x$. Then there exists an x_i such that $x_i \notin S_x(1 \le i \le b - a + 1)$. Now this x_i does not lie on any x - v triangle free detour for $v \ne x_i$ and $v \in S_x$, this is a contradiction to S_x is a x-triangle free detour basis. Thus $X \subseteq S_x$. It is clear that $X \cup Z$ is an x-triangle free detour basis so that $dn_{\Delta f_x}(G) = a - 1 + b - a + 1 = b$.

3. Bounds for the Vertex Triangle Free Detour Number of a Graph

Theorem 3.1. For any vertex *x* in a connected graph *G* of order *n* and a triangle free detour eccentricity $e_{\Delta f}(x)$, $dn_{\Delta f_x}(G) \leq n - e_{\Delta f}(x)$.

Proof. Let *x* be any vertex of *G* and *v* a triangle free detour eccentric vertex of *x*. Then $D_{\Delta f}(u, v) = e_{\Delta f}(x)$. Let $P : x = x_0, x_1, ..., x_k = v$ be an x - v triangle free detour in *G*. Let $S = V(G) - \{x_0, x_1, ..., x_{k-1}\}$. Since each x_i ($0 \le i \le k - 1$) lies on an x - v triangle free detour, *S* is an *x*-triangle free detour set of *G* so that $dn_{\Delta f_x}(G) \le n - e_{\Delta f}(x)$.

Remark 3.2. The bounds in Theorem 3.1 is sharp. For the cycle C_n , $dn_{\Delta f_x}(C_n) = 1 = n - e_{\Delta f}(x)$ for every vertex x in C_n . Also for the graph G in Figure 3.1, n = 10, $e_{\Delta f}(x_7) = 7$ and $S = \{x_4, x_9, x_{10}\}$ is a $dn_{\Delta f_{x_7}}$ -set so that $dn_{\Delta f_{x_7}} = 3$. Thus $dn_{\Delta f_{x_7}} = n - e_{\Delta f}(x_7)$. The inequality in Theorem 3.1 can also be strict. For the same graph G given in Figure 3.1, $e_{\Delta f}(x_3) = 5$ and $S = \{x_4, x_7, x_9, x_{10}\}$ is a $dn_{\Delta f_{x_3}}$ -set so that $dn_{\Delta f_{x_3}}(G) = 4$. Thus $dn_{\Delta f_{x_3}}(G) < n - e_{\Delta f}(x_3)$.

Figure 3.1: G

Corollary 3.3. If G is a connected graph of order n and triangle free detour diameter $D_{\Delta f}$, then $dn_{\Delta f_x}(G) \leq n - \frac{D_{\Delta f}}{2}$ for every vertex x in G.

Proof. Since $R_{\Delta f} \leq e_{\Delta f}(x)$ for every vertex x in G and Theorem 3.1 that $dn_{\Delta f_x}(G) \leq n - \frac{D_{\Delta f}}{2}$.

Remark 3.4. The bound in Corollary 3.3 is sharp. For the star $K_{1,n-1}$ ($n \ge 3$), by Theorem 2.10(*iv*), $dn_{\triangle f_x}(K_{1,n}) = n - 1 = n - \frac{D_{\triangle f}}{2}$ for the cut vertex x in $K_{1,n-1}$. Also, the inequality in Corollary 3.3 can be strict. For the star $K_{1,n-1}$ ($n \ge 3$), by Theorem 2.10(*iv*), $dn_{\triangle f_x}(K_{1,n-1}) = n - 2 < n - \frac{D_{\triangle f}}{2}$ for an end vertex x in $K_{1,n-1}$.

Theorem 3.5. Let G be a connected graph of order $n \ge 2$ and $G \ne K_3$. Then $G = K_{1,n-1}$ if and only if $dn_{\triangle f_x}(G) = n - 1$ or $dn_{\triangle f_x}(G) = n - 2$ for every vertex x of G.

Proof. If $G = K_{1,n-1}$, then by Theorem 2.10(*iv*), $dn_{\Delta f_x}(G) = n - 1$ or $dn_{\Delta f_x}(G) = n - 2$ for every vertex *x* of *G*. If n = 2, then $G = K_2 = K_{1,n-1}$. If n = 3, then $G = P_3 = K_{1,n-1}$. Let $n \ge 4$. We prove that *G* is a star. Suppose *G* is not a star. If *G* is a tree, then *G* has at most n - 2 end-vertices. By Corollary 2.7, $dn_{\Delta f_x}(G) \le n - 3$ if *x* is an end-vertex, which is a contradiction. Now, if *G* is not a tree. Let c(G) be the length of a longest cycle, say *C* in *G*. If $c(G) \ge 4$, then $D_{\Delta f} \ge 3$ so that $e_{\Delta f}(x) \ge 3$ for some vertex *x* in *G*. Hence by Theorem 3.1, $dn_{\Delta f_x}(G) \le n - 3$, which is a contradiction. If c(G) = 3, let u, v, w, u be a triangle in *G*. Since $n \ge 4$, there exists $x \in V(G) - \{u, v, w\}$ such that *x* is adjacent to at least one of u, v, w say $xu \in E(G)$. Then x, u, v, w is a path in *G* so that $e_{\Delta f}(x) \ge 3$. Then by Theorem 3.1, $dn_{\Delta f_x}(G) \le n - 3$, which is a contradiction. Thus *G* is a star.

Theorem 3.6. Let G be a connected graph of order $n \ge 5$. Then $dn_{\Delta f_x}(G) = n - 2$ or $dn_{\Delta f_x}(G) = n - 3$ for every vertex x of G if and only if G is a double star or $K_{1,n-1} + e$.

Proof. It is straightforward to verify that if *G* is a double star or $K_{1,n-1} + e$, then $dn_{\Delta f_x}(G) = n - 2$ or $dn_{\Delta f_x}(G) = n - 3$ for every vertex *x* of *G*. For the converse, let *G* be a connected graph of order $n \ge 5$

Mapana J Sci, 15, 3 (2016)

such that $dn_{\Delta f_x}(G) = n - 2$ or $dn_{\Delta f_x}(G) = n - 3$ for every vertex *x* of *G*. If $D_{\Delta f} \leq 2$, then *G* is the star $K_{1,n-1}$ and so by Theorem 2.10 (iv), $dn_{\Delta f_x}(G) = n - 1$ for the cut vertex *x* in *G*, which is a contradiction. Let $D_{\Delta f} = 3$. If *G* is a tree, then *G* is a double star and the result follows from Corollary 2.7. Assume that *G* is not a tree. Let c(G) denote the length of a longest cycle in *G*. Since $D_{\Delta f} = 3$, it follows that $c(G) \leq 4$. We consider two cases.

Case 1. Let c(G) = 4. Let $C_4 : v_1, v_2, v_3, v_4, v_1$ be a 4-cycle in *G*. Since $n \ge 5$ and *G* is connected, there exists a vertex *x* not on C_4 such that *x* is adjacent to some vertex, say v_1 of C_4 . Then x, v_1, v_2, v_3, v_4 is a path of length 4 in *G* so that $D_{\Delta f} \ge 4$, which is a contradiction.

Case 2. Let c(G) = 3. If *G* contains two or more triangles, then c(G) = 4 or $D_{\Delta f} \ge 4$, which is a contradiction. Hence *G* contains an unique triangle $C_3 : v_1, v_2, v_3, v_1$. Now, we prove that there is exactly one vertex on C_3 of degree at least 3. If there are two or more vertices of C_3 having degree 3 or more, then $D_{\Delta f} \ge 4$, which is a contradiction. Thus exactly one vertex in C_3 has degree 3 or more. Since $D_{\Delta f} = 3$, it follows that $G = K_{1,n-1} + e$. Now, it follows from Theorem 2.4 and Theorem 2.10 that $dn_{\Delta f_x}(G) = n - 2$ or $dn_{\Delta f_x}(G) = n - 3$ according as x is a cut vertex or not. If $D_{\Delta f} \ge 4$, then $e_{\Delta f}(x) \ge 4$ for some vertex x in *G*. Hence by Theorem 3.1, $dn_{\Delta f_x}(G) \le n - e_{\Delta f}(x) \le n - 4$, which is a contradiction.

Remark 3.7. Theorem 3.6 is not true for n = 4. For the graph C_4 , n = 4 and $dn_{\Delta f_x}(G) = 1 = n - 3$ for every vertex x in G. However, G is neither a double star nor $K_{1,n-1} + e$.

Theorem 3.8. For every tree *T* with triangle free detour diameter $D_{\Delta f}$, $dn_{\Delta f_x}(G) = n - D_{\Delta f}$ or $dn_{\Delta f_x}(G) = n - D_{\Delta f} + 1$ for every vertex *x* of *T* if and only if *T* is a caterpillar.

Proof. If *T* be any tree. Let $P : u = u_0, v_1, ..., v_{D_{\Delta f}} = v$ be a triangle free detour diametral path. Let *k* be the number of end vertices of *T* and *l* be the number of internal vertices of *T* other than $v_1, v_2, ..., v_{D_{\Delta f}-1}$. Then $D_{\Delta f}-1+l+k = n$. By Corollary 2.6, $dn_{\Delta f_x}(T) = k$ or $dn_{\Delta f_x}(T) = k-1$ for every vertex *x* of *T* and so $dn_{\Delta f_x}(T) = n - D_{\Delta f} - 1 + l$ or $dn_{\Delta f_x}(T) = n - D_{\Delta f} - 1$ for every vertex *x* of *T*. Hence $dn_{\Delta f_x}(T) = n - D_{\Delta f} + l$ or $dn_{\Delta f_x}(T) = n - D_{\Delta f}$ for every vertex *x* of *T* if and only if l = 0 if and only if all the internal vertices of *T* lie on the triangle free detour diametral path *P* if and only if *T* is a caterpillar.

Theorem 3.9. For every pair *a*, *b* of integers with $1 \le a \le b$, there exists *a* connected graph *G* with $d_x(G) = a$ and $dn_{\triangle f_x}(G) = b$.

Proof. **Case 1.** For $1 \le a = b$, any tree with *a* end vertices has the desired properties, by Theorem 2.5 and Corollary 2.7.

Case 2. For $1 \le a < b$. Let $P_i : v_i(1 \le i \le b - a)$ be a b - a copies of a path of order 1 and $P : x, u_1, u_2, u_3$ a path of order 4. Let *G* be the graph obtained by joining each $v_i(1 \le i \le b - a)$ in P_i and u_1 in *P* and u_2 in *P*. Adding *a* new vertices $w_1, w_2, ..., w_a$ and joining each $w_i(1 \le i \le a)$ to u_3 . The resulting graph *G* of order b + 4 is shown in Figure 3.2. Let $S_1 = \{x, w_1, w_2, ..., w_a\}$ be the set of all extreme vertices of *G*. It is easily verified that $S = S_1 - \{x\}$ is a *x*-detour set of *G* and so by Theorem 1.4, $d_x(G) = |S| = a$.

Figure 3.2: *G*

Next, we show that $dn_{\Delta f_x}(G) = b$. By Theorem 2.4, every *x*-triangle free detour set of *G* contains *S*. Clearly, *S* is not a triangle free detour set of *G*. It is easily verified that each $v_i(1 \le i \le b - a)$ must belong to every *x*-triangle free detour set of *G*. Thus $T = S \cup \{v_1, v_2, ..., v_{b-a}\}$ is a *x*-triangle free detour set of *G*, it follows from Theorem 2.4 that *T* is a *x*-triangle free detour basis of *G* and so $dn_{\Delta f_x}(G) = b$.

Theorem 3.10. For every pair *a*, *b* of integers with $1 \le a \le b$, there exists a connected graph *G* with $dn_{\triangle f_x}(G) = a$ and $dm_x(G) = b$.

Proof. **Case 1.** For $1 \le a = b$, any tree with *a* end vertices has the desired properties, by Theorem 2.4 and Corollary 2.6.

Case 2. For $1 \le a < b$. Let $P_i : s_i, t_i(1 \le i \le b - a)$ be a b - a copies of a path of order 2 and $P : x, u_1, u_2, u_3$ a path of order 4. Let *G* be the graph obtained by joining each $s_i(1 \le i \le b - a)$ in P_i to u_1 in *P* and joining each $t_i(1 \le i \le b - a)$ in P_i to u_2 in *P*. Adding *a* new vertices $w_1, w_2, ..., w_a$ and joining each $w_i(1 \le i \le a)$ to u_3 . The resulting graph *G* of order 2b - a + 4 is shown in Figure 3.3. Let $S_1 = \{x, w_1, w_2, ..., w_a\}$ be the set of all extreme vertices of *G*. It is easily verified that $S = S_1 - \{x\}$ is a *x*-trianlge free detour set of *G* and so by Theorem 2.4, $dn_{\Delta f_x}(G) = |S| = a$.

Figure 3.3: *G*

Next, we show that $dm_x(G) = b$. By Theorem 1.5, every *x*-detour monophonic set of *G* contains *S*. Clearly, *S* is not a detour monophonic set of *G*. It is easily verified that each $s_i(1 \le i \le b - a)$ or each $t_i(1 \le i \le b - a)$ must belong to every *x*-detour monophonic set of *G*. Thus $T = S \cup \{s_1, s_2, ..., s_{b-a}\}$ is a *x*-detour monophonic set of *G*, it follows from Theorem 2.5 that *T* is a *x*-detour monophonic basis of *G* and so $dm_x(G) = b$.

Theorem 3.11. For every pair *a*, *b* of integers with $1 \le a \le b$, there exists a connected graph *G* with $dn_{\triangle f_x}(G) = a$ and $g_x(G) = b$.

Proof. This follows from Theorem 3.10.

Theorem 3.12. For positive integers *a*, *b* and $c \ge 2$ with a < b, there exists a connected graph *G* with $R_{\Delta f}(G) = a$, $D_{\Delta f}(G) = b$ and $dn_{\Delta f_x}(G) = c$ or $dn_{\Delta f_x}(G) = c - 1$ for every vertex *x* of *G*.

Proof. If a = 1, then b = 2. Take $G = K_{1,c}$. Then by Theorem 2.9(iv), $dn_{\Delta f_x}(G) = c$ or $dn_{\Delta f_x}(G) = c - 1$ for every vertex x of G. Now, let $a \ge 2$. We construct a graph G with the desired properties as follows.

Let $C_{a+1} : v_1, v_2, ..., v_{a+1}, v_1$ be a cycle of order a + 1 and let $P_{b-a+1} : u_0, u_1, ..., u_{b-a}$ be a path of order b - a + 1. Let H be a graph obtained from C_{a+1} and P_{b-a+1} by identifying v_1 in C_{a+1} and u_0 in P_{b-a+1} . Now, add c - 2 new vertices $w_1, w_2, ..., w_{c-2}$ to H by joining each vertex $w_i(1 \le i \le c - 2)$ to the vertex u_{b-a-1} and obtain the graph G of Figure 3.4. Now, $R_{\Delta f} = a, D_{\Delta f} = b$ and G has c - 1 end vertices.

Case 1. Let *a* be even. If a = 2, then $dn_{\Delta f_x}(G) = c$ or $dn_{\Delta f_x}(G) = c - 1$ according as $x \in \{v_1, u_1, u_2, ..., u_{b-a-1}\}$ or $x \in \{v_2, v_3, u_{b-a}, w_1, w_2, ..., w_{c-2}\}$. If $a \ge 4$, then $dn_{\Delta f_x}(G) = c$ or $dn_{\Delta f_x}(G) = c - 1$ according as $x \in \{v_1, v_3, v_4, ..., v_a, u_1, u_2, ..., u_{b-a-1}\}$ or $x \in \{v_2, v_{a+1}, u_{b-a}, w_1, w_2, ..., w_{c-2}\}$.

Case 2. Let *a* be odd. If a = 3, then $dn_{\Delta f_x}(G) = c$ or $dn_{\Delta f_x}(G) = c - 1$ according as $x \in \{v_1, u_1, u_2, ..., u_{b-a-1}\}$ or $x \in \{v_2, v_3, v_4, u_{b-a}, w_1, w_2, ..., w_{c-2}\}$. If $a \ge 5$, then $dn_{\Delta f_x}(G) = c$ or $dn_{\Delta f_x}(G) = c - 1$ according as $x \in \{v_1, v_3, v_4, ..., v_{(a+1)/2}, v_{(a+5)/2}, ..., v_a, u_1, u_2, ..., u_{b-a-1}\}$ or $x \in \{v_2, v_{(a+3)/2}, v_{a+1}, u_{b-a}, w_1, w_2, ..., w_{c-2}\}$. Thus $dn_{\Delta f_x}(G) = c$ or $dn_{\Delta f_x}(G) = c - 1$ for every vertex *x* of *G*.

Figure 3.4: *G*

Theorem 3.13. For each triple *a*, *b* and *n* of positive integers with $1 \le b \le n - a + 1$ and $a \ge 4$, there exists a connected graph *G* of order *n* with triangle free detour diameter $D_{\triangle f} = a$ and $dn_{\triangle f_x}(G) = b$ or $dn_{\triangle f_x}(G) = b - 1$ for every vertex *x* of *G*.

Proof. Let *G* be a graph obtained from the cycle $C_a : u_1, u_2, ..., u_a, u_1$ of order *a* by (i) adding b - 1 new vertices $v_1, v_2, ..., v_{b-1}$ and joining each vertex $v_i(1 \le i \le b - 1)$ to u_1 and (ii) adding n - a - b + 1 new vertices $w_1, w_2, ..., w_{n-a-b+1}$ and joining each vertex $w_i(1 \le i \le n - a - b + 1)$ to both u_1 and u_3 . The graph *G* has order *n* and triangle free detour diameter *a* and is shown in Figure 3.5. If b = 1, $dn_{\triangle f_x}(G) = b$ for every vertex *x* in *G*. If $b \ge 2$, then we consider two cases.

Case 1. Let *a* be even. If a = 4, then $dn_{\Delta f_x}(G) = b$ or $dn_{\Delta f_x}(G) = b - 1$ according as $x = u_1$ or $x \in \{u_2, u_3, u_4, v_1, v_2, ..., v_{b-1}, w_1, w_2, ..., w_{n-a-b+1}\}$. If $a \ge 6$, then $dn_{\Delta f_x}(G) = b$ or $dn_{\Delta f_x}(G) = b - 1$ according as $x \in \{u_1, u_2, ..., u_{a/2}, u_{(a+4)/2}, ..., u_{a-1}, w_1, ..., w_{c-a-b+1}\}$ or $x \in \{u_{(a+2)/2}, u_a, v_1, v_2, v_{b-1}\}$.

Case 2. Let *a* be odd. Clearly $dn_{\Delta f_x}(G) = b$ or $dn_{\Delta f_x}(G) = b-1$ according as $x \in \{u_1, u_2, u_2, ..., u_{a-1}, w_1, ..., w_{n-a-b+1}\}$ or $x \in \{u_a, v_1, v_2, ..., v_{b-1}\}$. Thus $dn_{\Delta f_x}(G) = b$ or $dn_{\Delta f_x}(G) = b-1$ for every vertex *x* of *G*.

Figure 3.5: *G*

Theorem 3.14. Let $n \ge 2$ be any integer. For $1 \le a \le n - 1$, there exists a connected graph *G* with order *n* and $dn_{\triangle f_x}(G) = a$ or $dn_{\triangle f_x}(G) = a - 1$ for every vertex *x* of *G*.

Proof. For n = 2, $G = K_2$ has the desired properties. For n = 3, $G = C_3$ or P_3 has the desired properties according as a = 1 or a = 2. For $n \ge 4$, we consider three cases.

Case 1. Let a = 1. Then $G = C_n$ has the desired properties.

Case 2. Let $2 \le a \le n - 2$. Then $n - a + 1 \ge 3$. The graph *G* is obtained from the cycle $C_{n-a+1} : u_1, u_2, ..., u_{n-a+1}, u_1$ by adding the a - 1 new vertices $v_1, v_2, ..., v_{a-1}$ and joining these to u_1 . The graph *G* is shown in Figure 3.6.

Subcase a. Let n - a + 1 be even. If n - a + 1 = 4, then $dn_{\Delta f_x}(G) = a$ or $dn_{\Delta f_x}(G) = a - 1$ according as $x = u_1$ or $x \in \{u_2, u_3, u_4, v_1, v_2, ..., v_{a-1}\}$. If $n - a + 1 \ge 6$, then $dn_{\Delta f_x}(G) = a$ or $dn_{\Delta f_x}(G) = a - 1$ according as $x \in \{u_1, u_3, u_4, ..., u_{(n-a+1)/2}, u_{(n-a+5)/2}, ..., u_{n-a}\}$ or $x \in \{u_2, u_{(n-a+3)/2}, u_{n-a+1}, v_1, v_2, ..., v_{a-1}\}$.

Subcase b. Let n - a + 1 be odd. If n - a + 1 = 3, then $dn_{\Delta f_x}(G) = a$ or $dn_{\Delta f_x}(G) = a - 1$ according as $x = u_1$ or $x \in \{u_2, u_3, v_1, v_2, ..., v_{a-1}\}$. If $n - a + 1 \ge 5$, then $dn_{\Delta f_x}(G) = a$ or $dn_{\Delta f_x}(G) = a - 1$ according as $x \in \{u_1, u_3, u_4, ..., u_{n-a}\}$ or $x \in \{u_2, u_{n-a+1}, v_1, v_2, ..., v_{a-1}\}$. Thus $dn_{\Delta f_x}(G) = a$ or $dn_{\Delta f_x}(G) = a - 1$ for every vertex x of G.

Case 3. Let a = n - 1. Then $G = K_{1,n-1}$ has the desired properties. \Box

Figure 3.6: *G*

Figure 3.7: *G*

Theorem 3.15. For any four positive integers *a*, *b*, *c* and *d* of with $2 \le a \le b \le c \le d$, there exists a connected graph *G* such that $d_x(G) = a$, $dn_{\Delta f_x}(G) = b$, $dm_x(G) = c$ and $g_x(G) = d$.

Proof. Let $2 \le a \le b \le c \le d$. Let P : x, a, b, c, d, e, f be a path of order 7 and adding a-1 new vertices $v_1, v_2, v_3, v_4, \dots, v_{a-1}$ to f. Let $P_i : g_i(1 \le i \le b-a)$ be a b-a copies of K_1 and joining each $g_i(1 \le i \le b-a)$ in P_i to a and b in P. Let $P_j : h_j, k_j(1 \le j \le c-b)$ be a c-b copies of a path of length 2 and joining each $h_j(1 \le j \le c-b)$ in P_j to b in P and joining each $k_j(1 \le j \le c-b)$ be a c-c be a

Mapana J Sci, 15, 3 (2016)

d - c copies of a path of order 2 and joining each $l_k(1 \le k \le d - c)$ in P_k to c in P and joining $m_k(1 \le k \le d - c)$ in P_k to e in P. The resulting graph G is shown in Figure 3.7.

It is easily verify that $S_1 = \{d, v_1, v_2, \dots, v_{a-1}\}$ is a minimum *x*-detour set, $S_2 = S_1 \cup \{g_1, g_1, g_2, \dots, g_{b-a}\}$ is a *x*-triangle free detour basis, $S_3 = S_2 \cup \{h_1, h_2, h_3, \dots, h_{c-b}\}$ is a minimum *x*-detour monophonic set and $S_4 = S_3 \cup \{l_1, l_2, l_2, \dots, l_{d-c}\}$ is a minimum *x*-geodetic set. Thus $dn_x(G) = a$, $dn_{\Delta f_x}(G) = b$, $dm_x(G) = c$ and $g_x(G) = d$.

References

- [1] G. Chartrand and P. Zhang, *Introduction to Graph Theory*. New Delhi: Tata McGraw-Hill, 2006.
- [2] F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1969.
- [3] I. Keerthi Asir and S. Athisayanathan, "Triangle Free Detour Distance in Graphs," J. Combin. Math. Combin. Comput., to be published.
- [4] A. P. Santhakumaran and P. Titus, "The Vertex Detour Number of a Graph," *AKCE J. Graphs. Combin.*, vol. 4, no. 1, pp. 99 112, 2007.
- [5] A. P. Santhakumaran and P. Titus," Vertex Geodomination Number in Graphs," Bulletin of Kerala Mathematics Association, vol. 2, no. 2, pp. 45-57, 2005.
- [6] S. Sethu Ramalingam, I. Keerthi Asir and S. Athisayanathan, "Triangle Free Detour Number of a Graph," submitted for publication.
- [7] P. Titus and P. Balakrishnan, "The Vertex Detour Monophonic Number of a Graph," submitted for publication.