Mapana J Sci, 15, 3 (2016), 9-24
ISSN 0975-3303 | https://doi.org/ 10.12723/mjs.38.2

Vertex Triangle Free Detour Number of a Graph

S. Sethu Ramalingam*, I. Keerthi Asir ${ }^{\dagger}$ and S. Athisayanathan ${ }^{\ddagger}$

Abstract

The x-triangle free detour number $d n_{\Delta f_{x}}(G)$ of a connected graph G is the minimum order of its x-triangle free detour sets and any x-triangle free detour set $S_{x} \subseteq V$ of order $d n_{\Delta f_{x}}(G)$ is a x-triangle free detour basis of G. A connected graph of order n with vertex triangle free detour number $n-1$ or $n-2$ for every vertex is characterized. Certain general properties satisfied by the vertex triangle free detour sets are studied.

Keywords: Triangle free detour distance, Triangle free detour number, Vertex triangle free detour set, Vertex triangle free detour number

Mathematics Subject Classification (2010): 05C12

1. Introduction

The concept of triangle free detour distance was introduced by Keerthi Asir and Athisayanathan.[3] A path P is called a triangle free path if no three vertices of P induce a triangle. For vertices u and v in a connected graph G, the triangle free detour distance $D_{\Delta f}(u, v)$ is the length of a longest $u-v$ triangle free path in G. A $u-v$ path of length $D_{\Delta f}(u, v)$ is called a $u-v$ triangle free detour. The triangle free detour eccentricity $e_{\Delta f}(v)$ of a vertex in G is the maximum triangle free detour distance from v to a vertex of G . The triangle free detour ${\operatorname{radius,~} \operatorname{rad}_{\Delta f}(G) \text { or }}^{\operatorname{ran}}$ $R_{\Delta f}$ of G is the minimum triangle free detour eccentricity among the vertices of G , while the triangle free detour diameter, $\operatorname{diam}_{\Delta f}(G)$ or $D_{\Delta f}$ of G is the maximum triangle free detour eccentricity among the vertices of G.
The concept of triangle free detour number was introduced and studied by Sethu Ramalingam et al. [6] A set $S \subseteq V$ is called a triangle free

[^0]detour set of G if every vertex of G lies on a triangle free detour joining a pair of vertices of S. The triangle free detour number $d n_{\Delta f}(G)$ of G is the minimum order of its triangle free detour sets and any triangle free detour set of order $d n_{\Delta f}(G)$ is called a triangle free detour basis of G.

The concept of vertex detour number of a graph was introduced and studied in [4]. For any vertex x in a connected graph G, a set S of vertices of G is an x-detour set if each vertex v of G lies on an $x-y$ detour in G for some vertex y in S. The minimum cardinality of an x-detour set of G is defined as the x-detour number of G, denoted by $d_{x}(G)$ or simply d_{x}. An x-detour set of cardinality $d_{x}(G)$ is called a d_{x}-set of G. The concept of vertex detour monophonic number of a graph was in-
troduced and studied by Titus and Balakrishnan.[7] A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called monophonic if it is a chordless path. A longest $u-v$ monophonic path is called an $u-v$ detour monophonic path. For any vertex x in a connected graph G, a set S of vertices of G is an x-detour monophonic set if each vertex v of G lies on an $x-y$ detour monophonic in G for some vertex y in S. The minimum cardinality of an x-detour monophonic set of G is defined as the x-detour monophonic number of G, denoted by $d m_{x}(G)$ or simply $d m_{x}$. An x-detour monophonic set of cardinality $d m_{x}(G)$ is called a $d m_{x}$-set of G.

The concept of vertex geodetic number of a graph was introduced and studied by Santhakumaran et al.[5] For any vertex x in a connected graph G, a set S of vertices of G is an x-geodetic set if each vertex v of G lies on an $x-y$ geodetic in G for some vertex y in S. The minimum cardinality of an x-geodetic set of G is defined as the x-geodetic number of G, denoted by $g_{x}(G)$ or simply g_{x}. An x-geodetic set of cardinality $g_{x}(G)$ is called a g_{x}-set of G. Throughout this paper G denotes a finite undirected simple connected graph with at least two vertices. For basic definitions and terminologies, we refer to Chartrand and Zhang.[1]

The following theorems are useful for the results in this paper.
Theorem 1.1. [2] Let v be a vertex of a connected graph G. The following statements are equivalent:
(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every $u-w$ path.
(iii) There exists a partition of the set of vertices $V-\{v\}$ into subsets U and W such that for any vertices $u \in U$ and $w \in W$, the vertex v is on every u - w path.

Theorem 1.2. [6] Every extreme-vertex of a connected graph G belongs to every triangle free detour set of G.

Theorem 1.3. [6] If T is a tree with k end-vertices, then $d n_{\Delta f}(T)=k$.

Theorem 1.4. [4] Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belong to every x-detour set.
(ii) No cut vertex of G belongs to any d_{x}-set.

Theorem 1.5. [7] Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belong to every x-detour monophonic set.
(ii) No cut vertex of G belongs to any $d m_{x}$-set.

Theorem 1.6. [5] Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belong to every x-geodetic set.
(ii) No cut vertex of G belongs to any g_{x}-set.

2. Vertex Triangle Free Detour Number

Let x be a vertex of a connected graph G. A set $S_{x} \subseteq V$ is called an x triangle free detour set of G if every vertex v of G lies on a $x-y$ triangle free detour in G for some vertex y in S_{x}. The vertex triangle free detour number $d n_{\Delta f_{x}}(G)$ of G is the minimum order of its x-triangle free detour sets and any x-triangle free detour set of order $d n_{\Delta f_{x}}(G)$ is a vertex triangle free detour basis of G. An x-triangle free detour set of cardinality $d n_{\Delta f_{x}}(G)$ is called a $d n_{\Delta f_{x}}$-set of G.

Theorem 2.1. For any vertex x in G, x does not belong to any $d n_{\Delta f_{x}}$-set of G.

Proof. Suppose that x belongs to a $d n_{\Delta f_{x}}$-set, say S_{x} of G. Since G is a connected graph with at least two vertices, it follows from the definition of an x-triangle free detour set that S_{x} contains a vertex v different from x. Since the vertex x lies on every $x-v$ triangle free detour in G, it follows that $T=S_{x}-\{x\}$ is an x-triangle free detour set of G, which is a contradiction to S_{x} a minimum x-triangle free detour set of G.

Example 2.2. For the graph G given in Figure 2.1, a minimum vertex triangle free detour sets and the vertex triangle free detour numbers are given in Table 2.1.

For the graph G given in Figure 2.1, the sets $S_{1}=\{d, f\}, S_{2}=S_{1} \cup\{g\}$, $S_{3}=S_{2} \cup\{h\}$ and $S_{4}=S_{3} \cup\{j\}$ are minimum x-detour set, minimum x-triangle free detour set, minimum x-detour monophonic set and minimum x-geodetic set respectively and hence $d_{x}(G)=2, d n_{\Delta f_{x}}(G)=3$, $d m_{x}(G)=4$ and $g_{x}(G)=5$. Thus the vertex detour number, vertex triangle free detour number, vertex detour monophonic number and vertex geodetic number of a graph G are distinct.

Vertex t	Minimum $d n_{\Delta f_{i}}$-set	$d n_{\Delta f_{i}}(G)$
x	$\{g, d, f\}$	3
a	$\{x, g, d, f\}$	4
b	$\{x, g, d, f\}$	4
c	$\{x, g, d, f\}$	4
d	$\{x, g, f\}$	3
e	$\{x, g, d, f\}$	4
f	$\{x, g, d\}$	3
g	$\{x, d, f\}$	3
h	$\{x, g, d, f\}$	4
i	$\{x, g, d, f\}$	4
j	$\{x, g, d, f\}$	4
k	$\{x, g, d, f\}$	4

Table 2.1

Remark 2.3. Let x be any vertex of G. Then for any vertex y belongs to a dn $n_{\Delta f_{x}}$-set S_{x} of G, the internal vertices of an $x-y$ triangle free detour may belong to S_{x}. For the graph G given in Figure 2.2, $S_{x}=\{w, z\}$ is a dn $n_{\Delta f_{x}}$-set of G and u belongs to S_{x} is an internal vertex of the $x-w$ triangle free detour say $P: x, u, v, w$.

Figure 2.2: G
Theorem 2.4. Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belong to every x-triangle free detour set.
(ii) No cut vertex of G belongs to any $d n_{\Delta f_{x}}$-set.

Proof. (i) Let x be any vertex of G. By Theorem 2.1, x does not belong to any $d n_{\Delta f_{x}}$-set. So let $v \neq x$ be an end-vertex of G. Then v is the terminal vertex of an $x-v$ triangle free detour and v is not an internal vertex of any triangle free detour so that v belongs to every x-triangle free detour set of G.
(ii) Let y be a cut vertex of G. Then by Theorem 1.1, there exists a partition of the set of vertices $V-\{y\}$ into subsets U and W such that for any vertex $u \in U$ and $w \in W$, the vertex y is on every $u-w$ path. Hence, if $x \in U$, then for any vertex w in W, y lies on every $x-w$ path so that y is an internal vertex of an $x-w$ triangle free detour. Let S_{x} be any $d n_{\Delta f_{x}}$ - set of G. Suppose $S_{x} \cap \mathrm{~W}=\phi$. Let $w_{1} \in W$. Since S_{x} is an x-triangle free detour set, there exists an element z in S_{x} such that w_{1} lies in some $x-z$ triangle free detour $P: x=z_{0}, z_{1}, \ldots, w_{1}, \ldots, z_{n}=z$ in G. Then the $x-w_{1}$ subpath of P and $w_{1}-z$ subpath of P both contain y so that P is not a path in G. Hence $S_{x} \cap \mathrm{~W} \neq \phi$. Let $w_{2} \in S_{x} \cap W$. Then y is an internal vertex of an $x-w_{2}$ triangle free detour. If $y \in S_{x}$, let $S=S_{x}-\{y\}$. It is clear that every vertex that lies on $x-y$ triangle free detour also lies on an $x-w_{2}$ triangle free detour. Hence it follows that S is an x-triangle free detour set of G, which is a contradiction to S_{x} is a minimum x-triangle free detour set of G. Thus y does not belong to any $d n_{\Delta f_{x}}$-set. Similarly if $x \in W, y$ does not belong to any $d n_{\Delta f_{x}}$-set. If $x=y$, then by Theorem 2.1, y does not belong to any $d n_{\Delta f_{x}}$-set.

Remark 2.5. If x is an end-vertex of G, x does not belong to any $d n_{\Delta f_{x}}$ set by Theorem 2.1.
Corollary 2.6. Let T be a tree with t end-vertices. Then $d n_{\Delta f_{x}}(T)=t-1$ or $d n_{\Delta f_{x}}(T)=t$ according to whether x is an end-vertex or not. In fact, if W is the set of all end-vertices of T, then $W-\{x\}$ is the unique $d n_{\Delta f_{x}}$-set of T.
Proof. Let W be the set of all end-vertices of T. It follows from Theorem 2.1 and Theorem 2.4 that $W-\{x\}$ is the unique $d n_{\Delta f_{x}}$-set of T for any end-vertex x in T and W is the unique $d n_{\Delta f_{x}}$-set of T for any cut vertex x in T. Thus $W-\{x\}$ is the unique $d n_{\Delta f_{x}}$-set of T for any vertex x in T.

Theorem 2.7. For any hamiltonian graph $G, d n_{\Delta f_{x}}(G)=1$ for every vertex x in G.
Proof. Let C be a hamiltonian cycle of G. Let x be any vertex of G and let y be any adjacent vertex of x in G. Clearly every vertex of G lies on a triangle free detour joining x and y. Thus $d n_{\Delta f_{x}}(G)=1$ for every vertex x in G.

Remark 2.8. The converse of Theorem 2.7 is false. For the graph G given in Figure 2.3, $d n_{\Delta f_{x}}(G)=1$ for every vertex x in G. But G is not hamiltonian.

Figure 2.3: G
The following theorem is an easy consequence of the definition of the vertex triangle free detour number.

Theorem 2.9. (i) For any path $P_{n}, d n_{\Delta f_{x}}\left(P_{n}\right)=1$ or $d n_{\Delta f_{x}}\left(P_{n}\right)=2$ according as x is an end-vertex or not.
(ii) For any cycle $C_{n}, d n_{\Delta f_{x}}\left(C_{n}\right)=1$ for every vertex x in C_{n}.
(iii) For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 5), d n_{\Delta f_{x}}\left(W_{n}\right)=n-1$ or $d n_{\Delta f_{x}}\left(W_{n}\right)=$ 2 according as x is in K_{1} or x in C_{n-1}.
(iv) For every vertex x in $G, d n_{\Delta f_{x}}\left(K_{1, m}\right)=m$ or $d n_{\Delta f_{x}}\left(K_{n, m}\right)=m-1$ if $m \geq 2$.
(v) For any complete graph $K_{n}, d n_{\Delta f_{x}}\left(K_{n}\right)=n-1$ for every vertex x in K_{n}.
(vi) For every vertex x in $G, d n_{\Delta f_{x}}\left(K_{n, m}\right)=1$ if $n=m=1$.

Theorem 2.10. Let G be a connected graph with cut vertices and let S_{x} be an x-triangle free detour set of G. Then every branch of G contains an element of $S_{x} \cup\{x\}$.

Proof. Suppose that there is a branch B of G at a cut vertex v such that B contains no vertex of $S_{x} \cup\{x\}$. Then clearly, $x \in V-\left(S_{x} \cup V(B)\right)$. Let $u \in V(B)-\{v\}$. Since S_{x} is an x-triangle free detour set, there is an element $y \in S_{x}$ such that u lies in some $x-y$ triangle free detour $P: x=u_{0}, u_{1}, \ldots, u, \ldots, u_{n}=y$ in G. By Theorem 1.1 the $x-u$ subpath of P and $u-y$ subpath of P both contain v, and it follows that P is not a path, contrary to assumption.

Since every end-block B is a branch of G at some cut-vertex, it follows by Theorems 2.4 and 2.10 that every $d n_{\Delta f_{x}}$-set of G together with the vertex x contains at least one vertex from B that is not a cutvertex. Thus the following corollaries are consequences of Theorem 2.10 .

Corollary 2.11. If G is a connected graph with k end-blocks, then $d n_{\Delta f_{x}}(G) \geq k-1$ for every vertex x in G.

Theorem 2.12. For any vertex x in $G, 1 \leq d n_{\Delta f_{x}}(G) \leq n-1$.
Proof. It is clear from the definition of $d n_{\Delta f_{x}}$-set that $d n_{\Delta f_{x}}(G) \geq 1$. Also since the vertex x does not belong to any $d n_{\Delta f_{x}}$-set, it follows that $d n_{\Delta f_{x}}(G) \leq n-1$.

Remark 2.13. The bounds in Theorem 2.13 are sharp. For the cycle C_{n}, $d n_{\Delta f_{x}}\left(C_{n}\right)=1$ for every vertex x in C_{n}. Also for any path $P_{n}, d n_{\Delta f_{x}}\left(P_{n}\right)=1$ for any end-vertex x in P_{n}. For the graph $K_{n}, d n_{\Delta f_{x}}\left(K_{n}\right)=n-1$ for every vertex x in K_{n}.

In the following theorem, we establish the relationship between the vertex triangle free detour number of a graph of a vertex and the triangle free detour number of a graph.

Theorem 2.14. For any vertex x in $G, 2 \leq d n_{\Delta f}(G) \leq d n_{\Delta f_{x}}(G)+1$.
Proof. A triangle free detour set needs at least two vertices so that $d n_{\Delta f}(G) \geq 2$. Let x be any vertex of G and let S_{x} be a $d n_{\Delta f_{x}}$-set of G. Then every vertex of G lies on an $x-y$ triangle free detour for some y in S_{x}. Thus $S_{x} \cup\{x\}$ is a triangle free detour set of G. Since $d n_{\Delta f}(G)$ is the minimum cardinality of a triangle free detour set, it follows that $d n_{\Delta f}(G) \leq \operatorname{dn}_{\Delta f_{x}}(G)+1$.

Remark 2.15. The bound in Theorem 2.14 is sharp. For the complete graph $K_{n}, d n_{\Delta f}\left(K_{n}\right)=d n_{\Delta f_{x}}\left(K_{n}\right)+1$ for every vertex x in K_{n}.

Theorem 2.16. For any two integers a and b with $2 \leq a \leq b+1$, there exists a connected graph G with $d n_{\Delta f}(G)=a$ and $d n_{\Delta f_{x}}(G)=b$ for some vertex x in G.

Proof. Case 1. $2 \leq a=b+1$. Let G be any tree with a end-vertices. By Theorem 1.3, $d n_{\Delta f}(G)=a$ and by Corollary 2.6, $d n_{\Delta f_{x}}(G)=b$ for an end-vertex x in G.
Case 2. $2 \leq a<b+1$. Let $F=\left(P_{3} \cup P_{2} \cup(b-a+1) K_{1}\right)+\overline{K_{2}}$, where $U=V\left(P_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}, W=V\left(P_{2}\right)=\left\{w_{1}, w_{2}\right\}, X=V\left((b-a+1) K_{1}\right)=$ $\left\{x_{1}, x_{2}, \ldots, x_{b-a+1}\right\}$ and $V\left(\overline{K_{2}}\right)=\{x, y\}$. Let G be the graph obtained from F by adding $a-1$ new vertices $z_{1}, z_{2}, \ldots, z_{a-1}$ and joining each $z_{i}(1 \leq i \leq$ $a-1$) to u_{1}. The graph G is shown in Figure 2.4. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{a-1}\right\}$ be the set of end vertices of G.

Figure 2.4: G
First, we show that $d n_{\Delta f}(G)=a$. By Theorem 1.2, every triangle free detour set of G contains Z. Since $Z \cup\left\{u_{1}\right\} \neq V(G)$, it follows that Z is not a triangle free detour set of G and so that $d n_{\Delta f}(G)>|Z|=a-1$. On the other hand, let $S=Z \cup\left\{w_{1}\right\}$. Then $D_{\Delta f}\left(z_{1}, w_{1}\right)=7$ and for each i with $1 \leq i \leq b-a+1$, the path $z_{1}, u_{1}, u_{2}, u_{3}, y, x_{i}, x, w_{1}$ is a $z_{1}-w_{1}$ triangle free detour in G. Hence S is a triangle free detour set of G and so $d n_{\Delta f}(G) \leq|S|=a$. Therefore $d n_{\Delta f}(G)=a$.

Next we show that $d n_{\Delta f_{x}}(G)=b$ for the vertex x. Let S_{x} be a minimum x-triangle free detour set of G. By Theorem 2.5 (i), $Z \subseteq S_{x}$. Since $D_{\Delta f}(x, Z)=6$ and no $x_{i}(1 \leq i \leq b-a+1)$ lies on an $x-z$ triangle free detour for any $z \in Z, Z$ is not an x-triangle free detour set of G. Now we claim that $X \subseteq S_{x}$. Assume, to the contrary, $X \notin S_{x}$. Then there exists an x_{i} such that $x_{i} \notin S_{x}(1 \leq i \leq b-a+1)$. Now this x_{i} does not lie on any $x-v$ triangle free detour for $v \neq x_{i}$ and $v \in S_{x}$, this is a contradiction to S_{x} is a x-triangle free detour basis. Thus $X \subseteq S_{x}$. It is clear that $X \cup Z$ is an x-triangle free detour set. Hence it follows that $X \cup Z$ is an x-triangle free detour basis so that $d n_{\Delta f_{x}}(G)=a-1+b-a+1=b$.

3. Bounds for the Vertex Triangle Free Detour Number of a Graph

Theorem 3.1. For any vertex x in a connected graph G of order n and a triangle free detour eccentricity $e_{\Delta f}(x), d n_{\Delta f_{x}}(G) \leq n-e_{\Delta f}(x)$.

Proof. Let x be any vertex of G and v a triangle free detour eccentric vertex of x. Then $D_{\Delta f}(u, v)=e_{\Delta f}(x)$. Let $P: x=x_{0}, x_{1}, \ldots, x_{k}=v$ be an $x-v$ triangle free detour in G. Let $S=V(G)-\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$. Since each $x_{i}(0 \leq i \leq k-1)$ lies on an $x-v$ triangle free detour, S is an x-triangle free detour set of G so that $d n_{\Delta f_{x}}(G) \leq n-e_{\Delta f}(x)$.

Remark 3.2. The bounds in Theorem 3.1 is sharp. For the cycle C_{n}, $d n_{\Delta f_{x}}\left(C_{n}\right)=1=n-e_{\Delta f}(x)$ for every vertex x in C_{n}. Also for the graph G in Figure 3.1, $n=10, e_{\Delta f}\left(x_{7}\right)=7$ and $S=\left\{x_{4}, x_{9}, x_{10}\right\}$ is a dn $n_{\Delta f_{7}}$ set so that $d n_{\Delta f x_{7}}=3$. Thus $d n_{\Delta f x_{7}}=n-e_{\Delta f}\left(x_{7}\right)$. The inequality in Theorem 3.1 can also be strict. For the same graph G given in Figure 3.1, $e_{\Delta f}\left(x_{3}\right)=5$ and $S=\left\{x_{4}, x_{7}, x_{9}, x_{10}\right\}$ is a dn $n_{\Delta f x_{3}}$-set so that $d n_{\Delta f x_{3}}(G)=4$. Thus $d n_{\Delta f x_{3}}(G)<n-e_{\Delta f}\left(x_{3}\right)$.

Figure 3.1: G
Corollary 3.3. If G is a connected graph of order n and triangle free detour diameter $D_{\Delta f}$, then $d n_{\Delta f_{x}}(G) \leq n-\frac{D_{\Delta f}}{2}$ for every vertex x in G.

Proof. Since $R_{\Delta f} \leq e_{\Delta f}(x)$ for every vertex x in G and Theorem 3.1 that $d n_{\Delta f_{x}}(G) \leq n-\frac{D_{\Delta f}}{2}$.

Remark 3.4. The bound in Corollary 3.3 is sharp. For the star $K_{1, n-1}(n \geq$ 3), by Theorem $2.10(i v), d n_{\Delta f_{x}}\left(K_{1, n}\right)=n-1=n-\frac{D_{\Delta f}}{2}$ for the cut vertex x in $K_{1, n-1}$. Also, the inequality in Corollary 3.3 can be strict. For the star $K_{1, n-1}(n \geq 3)$, by Theorem $2.10(i v), d n_{\Delta f_{x}}\left(K_{1, n-1}\right)=n-2<n-\frac{D_{\Delta f}}{2}$ for an end vertex x in $K_{1, n-1}$.

Theorem 3.5. Let G be a connected graph of order $n \geq 2$ and $G \neq K_{3}$. Then $G=K_{1, n-1}$ if and only if $d n_{\Delta f_{x}}(G)=n-1$ or $d n_{\Delta f_{x}}(G)=n-2$ for every vertex x of G.

Proof. If $G=K_{1, n-1}$, then by Theorem 2.10(iv), $d n_{\Delta f_{x}}(G)=n-1$ or $d n_{\Delta f_{x}}(G)=n-2$ for every vertex x of G. If $n=2$, then $G=K_{2}=K_{1, n-1}$. If $n=3$, then $G=P_{3}=K_{1, n-1}$. Let $n \geq 4$. We prove that G is a star. Suppose G is not a star. If G is a tree, then G has at most $n-2$ endvertices. By Corollary 2.7, $d n_{\Delta f_{x}}(G) \leq n-3$ if x is an end-vertex, which is a contradiction. Now, if G is not a tree. Let $c(G)$ be the length of a longest cycle, say C in G. If $c(G) \geq 4$, then $D_{\Delta f} \geq 3$ so that $e_{\Delta f}(x) \geq 3$ for some vertex x in G. Hence by Theorem 3.1, $d n_{\Delta f_{x}}(G) \leq n-3$, which is a contradiction. If $c(G)=3$, let u, v, w, u be a triangle in G. Since $n \geq 4$, there exists $x \in V(G)-\{u, v, w\}$ such that x is adjacent to at least one of u, v, w say $x u \in E(G)$. Then x, u, v, w is a path in G so that $e_{\Delta f}(x) \geq 3$. Then by Theorem 3.1, $d n_{\Delta f_{x}}(G) \leq n-3$, which is a contradiction. Thus G is a star.

Theorem 3.6. Let G be a connected graph of order $n \geq 5$. Then $d n_{\Delta f_{x}}(G)=n-2$ or $d n_{\Delta f_{x}}(G)=n-3$ for every vertex x of G if and only if G is a double star or $K_{1, n-1}+e$.

Proof. It is straightforward to verify that if G is a double star or $K_{1, n-1}+e$, then $d n_{\Delta f_{x}}(G)=n-2$ or $d n_{\Delta f_{x}}(G)=n-3$ for every vertex x of G. For the converse, let G be a connected graph of order $n \geq 5$
such that $d n_{\Delta f_{x}}(G)=n-2$ or $d n_{\Delta f_{x}}(G)=n-3$ for every vertex x of G. If $D_{\Delta f} \leq 2$, then G is the star $K_{1, n-1}$ and so by Theorem 2.10 (iv), $d n_{\Delta f_{x}}(G)=n-1$ for the cut vertex x in G, which is a contradiction. Let $D_{\Delta f}=3$. If G is a tree, then G is a double star and the result follows from Corollary 2.7. Assume that G is not a tree. Let $c(G)$ denote the length of a longest cycle in G. Since $D_{\Delta f}=3$, it follows that $c(G) \leq 4$. We consider two cases.

Case 1. Let $c(G)=4$. Let $C_{4}: v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ be a 4 -cycle in G. Since $n \geq 5$ and G is connected, there exists a vertex x not on C_{4} such that x is adjacent to some vertex, say v_{1} of C_{4}. Then $x, v_{1}, v_{2}, v_{3}, v_{4}$ is a path of length 4 in G so that $D_{\Delta f} \geq 4$, which is a contradiction.

Case 2. Let $c(G)=3$. If G contains two or more triangles, then $c(G)=4$ or $D_{\Delta f} \geq 4$, which is a contradiction. Hence G contains an unique triangle $C_{3}: v_{1}, v_{2}, v_{3}, v_{1}$. Now, we prove that there is exactly one vertex on C_{3} of degree at least 3. If there are two or more vertices of C_{3} having degree 3 or more, then $D_{\Delta f} \geq 4$, which is a contradiction. Thus exactly one vertex in C_{3} has degree 3 or more. Since $D_{\Delta f}=3$, it follows that $G=K_{1, n-1}+e$. Now, it follows from Theorem 2.4 and Theorem 2.10 that $d n_{\Delta f_{x}}(G)=n-2$ or $d n_{\Delta f_{x}}(G)=n-3$ according as x is a cut vertex or not. If $D_{\Delta f} \geq 4$, then $e_{\Delta f}(x) \geq 4$ for some vertex x in G. Hence by Theorem 3.1, $d n_{\Delta f_{x}}(G) \leq n-e_{\Delta f}(x) \leq n-4$, which is a contradiction.

Remark 3.7. Theorem 3.6 is not true for $n=4$. For the graph $C_{4}, n=4$ and $d n_{\Delta f_{x}}(G)=1=n-3$ for every vertex x in G. However, G is neither a double star nor $K_{1, n-1}+e$.

Theorem 3.8. For every tree T with triangle free detour diameter $D_{\Delta f}$, $d n_{\Delta f_{x}}(G)=n-D_{\Delta f}$ or $d n_{\Delta f_{x}}(G)=n-D_{\Delta f}+1$ for every vertex x of T if and only if T is a caterpillar.

Proof. If T be any tree. Let $P: u=u_{0}, v_{1}, \ldots, v_{D_{\Delta f}}=v$ be a triangle free detour diametral path. Let k be the number of end vertices of T and l be the number of internal vertices of T other than $v_{1}, v_{2}, \ldots, v_{D_{\Delta f}-1}$. Then $D_{\Delta f}-1+l+k=n$. By Corollary 2.6, $d n_{\Delta f_{x}}(T)=k$ or $d n_{\Delta f_{x}}(T)=k-1$ for every vertex x of T and so $d n_{\Delta f_{x}}(T)=n-D_{\Delta f}-1+l$ or $d n_{\Delta f_{x}}(T)=$ $n-D_{\Delta f}-1$ for every vertex x of T. Hence $d n_{\Delta f_{x}}(T)=n-D_{\Delta f}+l$ or $d n_{\Delta f_{x}}(T)=n-D_{\Delta f}$ for every vertex x of T if and only if $l=0$ if and only if all the internal vertices of T lie on the triangle free detour diametral path P if and only if T is a caterpillar.

Theorem 3.9. For every pair a, b of integers with $1 \leq a \leq b$, there exists a connected graph G with $d_{x}(G)=a$ and $d n_{\Delta f_{x}}(G)=b$.

Proof. Case 1. For $1 \leq a=b$, any tree with a end vertices has the desired properties, by Theorem 2.5 and Corollary 2.7.

Case 2. For $1 \leq a<b$. Let $P_{i}: v_{i}(1 \leq i \leq b-a)$ be a $b-a$ copies of a path of order 1 and $P: x, u_{1}, u_{2}, u_{3}$ a path of order 4. Let G be the graph obtained by joining each $v_{i}(1 \leq i \leq b-a)$ in P_{i} and u_{1} in P and u_{2} in P. Adding a new vertices $w_{1}, w_{2}, \ldots, w_{a}$ and joining each $w_{i}(1 \leq i \leq a)$ to u_{3}. The resulting graph G of order $b+4$ is shown in Figure 3.2. Let $S_{1}=\left\{x, w_{1}, w_{2}, \ldots, w_{a}\right\}$ be the set of all extreme vertices of G. It is easily verified that $S=S_{1}-\{x\}$ is a x-detour set of G and so by Theorem 1.4, $d_{x}(G)=|S|=a$.

Figure 3.2: G
Next, we show that $d n_{\Delta f_{x}}(G)=b$. By Theorem 2.4, every x-triangle free detour set of G contains S. Clearly, S is not a triangle free detour set of G. It is easily verified that each $v_{i}(1 \leq i \leq b-a)$ must belong to every x-triangle free detour set of G. Thus $T=S \cup\left\{v_{1}, v_{2}, \ldots, v_{b-a}\right\}$ is a x-triangle free detour set of G, it follows from Theorem 2.4 that T is a x-triangle free detour basis of G and so $d n_{\Delta f_{x}}(G)=b$.

Theorem 3.10. For every pair a, b of integers with $1 \leq a \leq b$, there exists a connected graph G with $d n_{\Delta f_{x}}(G)=a$ and $d m_{x}(G)=b$.

Proof. Case 1. For $1 \leq a=b$, any tree with a end vertices has the desired properties, by Theorem 2.4 and Corollary 2.6.

Case 2. For $1 \leq a<b$. Let $P_{i}: s_{i}, t_{i}(1 \leq i \leq b-a)$ be a $b-a$ copies of a path of order 2 and $P: x, u_{1}, u_{2}, u_{3}$ a path of order 4 . Let G be the graph obtained by joining each $s_{i}(1 \leq i \leq b-a)$ in P_{i} to u_{1} in P and joining each $t_{i}(1 \leq i \leq b-a)$ in P_{i} to u_{2} in P. Adding a new vertices $w_{1}, w_{2}, \ldots, w_{a}$ and joining each $w_{i}(1 \leq i \leq a)$ to u_{3}. The resulting graph G of order $2 b-a+4$ is shown in Figure 3.3. Let $S_{1}=\left\{x, w_{1}, w_{2}, \ldots, w_{a}\right\}$ be the set of all extreme vertices of G. It is easily verified that $S=S_{1}-\{x\}$ is a x trianlge free detour set of G and so by Theorem 2.4, $d n_{\Delta f_{x}}(G)=|S|=a$.

Figure 3.3: G
Next, we show that $d m_{x}(G)=b$. By Theorem 1.5, every x-detour monophonic set of G contains S. Clearly, S is not a detour monophonic set of G. It is easily verified that each $s_{i}(1 \leq i \leq b-a)$ or each $t_{i}(1 \leq i \leq b-a)$ must belong to every x-detour monophonic set of G. Thus $T=S \cup\left\{s_{1}, s_{2}, \ldots, s_{b-a}\right\}$ is a x-detour monophonic set of G, it follows from Theorem 2.5 that T is a x-detour monophonic basis of G and so $d m_{x}(G)=b$.

Theorem 3.11. For every pair a, b of integers with $1 \leq a \leq b$, there exists a connected graph G with $d n_{\Delta f_{x}}(G)=a$ and $g_{x}(G)=b$.

Proof. This follows from Theorem 3.10.
Theorem 3.12. For positive integers a, b and $c \geq 2$ with $a<b$, there exists a connected graph G with $R_{\Delta f}(G)=a, D_{\Delta f}(G)=b$ and $d n_{\Delta f_{x}}(G)$ $=c$ or $d n_{\Delta f_{x}}(G)=c-1$ for every vertex x of G.

Proof. If $a=1$, then $b=2$. Take $G=K_{1, c}$. Then by Theorem 2.9(iv), $d n_{\Delta f_{x}}(G)=c$ or $d n_{\Delta f_{x}}(G)=c-1$ for every vertex x of G. Now, let $a \geq 2$. We construct a graph G with the desired properties as follows.

Let $C_{a+1}: v_{1}, v_{2}, \ldots, v_{a+1}, v_{1}$ be a cycle of order $a+1$ and let P_{b-a+1} : $u_{0}, u_{1}, \ldots, u_{b-a}$ be a path of order $b-a+1$. Let H be a graph obtained from C_{a+1} and P_{b-a+1} by identifying v_{1} in C_{a+1} and u_{0} in P_{b-a+1}. Now, add $c-2$ new vertices $w_{1}, w_{2}, \ldots, w_{c-2}$ to H by joining each vertex $w_{i}(1 \leq i \leq c-2)$ to the vertex u_{b-a-1} and obtain the graph G of Figure 3.4. Now, $R_{\Delta f}=a, D_{\Delta f}=b$ and G has $c-1$ end vertices.

Case 1. Let a be even. If $a=2$, then $d n_{\Delta f_{x}}(G)=c$ or $d n_{\Delta f_{x}}(G)=c-1$ according as $x \in\left\{v_{1}, u_{1}, u_{2}, \ldots, u_{b-a-1}\right\}$ or $x \in\left\{v_{2}, v_{3}, u_{b-a}, w_{1}, w_{2}, \ldots, w_{c-2}\right\}$. If $a \geq 4$, then $d n_{\Delta f_{x}}(G)=c$ or $d n_{\Delta f_{x}}(G)=c-1$ according as $x \in$ $\left\{v_{1}, v_{3}, v_{4}, \ldots, v_{a}, u_{1}, u_{2}, \ldots, u_{b-a-1}\right\}$ or $x \in\left\{v_{2}, v_{a+1}, u_{b-a}, w_{1}, w_{2}, . ., w_{c-2}\right\}$.

Case 2. Let a be odd. If $a=3$, then $d n_{\Delta f_{x}}(G)=c$ or $d n_{\Delta f_{x}}(G)=c-1$ according as $x \in\left\{v_{1}, u_{1}, u_{2}, \ldots, u_{b-a-1}\right\}$ or $x \in\left\{v_{2}, v_{3}, v_{4}, u_{b-a}, w_{1}, w_{2}, \ldots, w_{c-2}\right\}$. If $a \geq 5$, then $d n_{\Delta f_{x}}(G)=c$ or $d n_{\Delta f_{x}}(G)=c-1$ according as $x \in$ $\left\{v_{1}, v_{3}, v_{4}, \ldots, v_{(a+1) / 2}, v_{(a+5) / 2}, \ldots, v_{a}, u_{1}, u_{2}, \ldots, u_{b-a-1}\right\}$ or $x \in\left\{v_{2}, v_{(a+3) / 2}\right.$, $\left.v_{a+1}, u_{b-a}, w_{1}, w_{2}, \ldots, w_{c-2}\right\}$. Thus $d n_{\Delta f_{x}}(G)=c$ or $d n_{\Delta f_{x}}(G)=c-1$ for every vertex x of G.

Figure 3.4: G

Theorem 3.13. For each triple a, b and n of positive integers with $1 \leq$ $b \leq n-a+1$ and $a \geq 4$, there exists a connected graph G of order n with triangle free detour diameter $D_{\Delta f}=a$ and $d n_{\Delta f_{x}}(G)=b$ or $d n_{\Delta f_{x}}(G)=$ $b-1$ for every vertex x of G.

Proof. Let G be a graph obtained from the cycle $C_{a}: u_{1}, u_{2}, \ldots, u_{a}, u_{1}$ of order a by (i) adding $b-1$ new vertices $v_{1}, v_{2}, \ldots, v_{b-1}$ and joining each vertex $v_{i}(1 \leq i \leq b-1)$ to u_{1} and (ii) adding $n-a-b+1$ new vertices $w_{1}, w_{2}, \ldots, w_{n-a-b+1}$ and joining each vertex $w_{i}(1 \leq i \leq n-a-b+1)$ to both u_{1} and u_{3}. The graph G has order n and triangle free detour diameter a and is shown in Figure 3.5. If $b=1, d n_{\Delta f_{x}}(G)=b$ for every vertex x in G. If $b \geq 2$, then we consider two cases.

Case 1. Let a be even. If $a=4$, then $d n_{\Delta f_{x}}(G)=b$ or $d n_{\Delta f_{x}}(G)=b-1$ according as $x=u_{1}$ or $x \in\left\{u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, \ldots, v_{b-1}, w_{1}, w_{2}, \ldots, w_{n-a-b+1}\right\}$. If $a \geq 6$, then $d n_{\Delta f_{x}}(G)=b$ or $d n_{\Delta f_{x}}(G)=b-1$ according as $x \in$ $\left\{u_{1}, u_{2}, \ldots, u_{a / 2}, u_{(a+4) / 2}, \ldots, u_{a-1}, w_{1}, \ldots, w_{c-a-b+1}\right\}$ or $x \in\left\{u_{(a+2) / 2}, u_{a}, v_{1}, v_{2}\right.$, $\left.v_{b-1}\right\}$.

Case 2. Let a be odd. Clearly $d n_{\Delta f_{x}}(G)=b$ or $d n_{\Delta f_{x}}(G)=b-1$ according as $x \in\left\{u_{1}, u_{2}, u_{2}, \ldots, u_{a-1}, w_{1}, \ldots, w_{n-a-b+1}\right\}$ or $x \in\left\{u_{a}, v_{1}, v_{2}, \ldots, v_{b-1}\right\}$. Thus $d n_{\Delta f_{x}}(G)=b$ or $d n_{\Delta f_{x}}(G)=b-1$ for every vertex x of G.

Figure 3.5: G

Theorem 3.14. Let $n \geq 2$ be any integer. For $1 \leq a \leq n-1$, there exists a connected graph G with order n and $d n_{\Delta f_{x}}(G)=a$ or $d n_{\Delta f_{x}}(G)=a-1$ for every vertex x of G.

Proof. For $n=2, G=K_{2}$ has the desired properties. For $n=3, G=C_{3}$ or P_{3} has the desired properties according as $a=1$ or $a=2$. For $n \geq 4$, we consider three cases.

Case 1. Let $a=1$. Then $G=C_{n}$ has the desired properties.
Case 2. Let $2 \leq a \leq n-2$. Then $n-a+1 \geq 3$. The graph G is obtained from the cycle $C_{n-a+1}: u_{1}, u_{2}, \ldots, u_{n-a+1}, u_{1}$ by adding the $a-1$ new vertices $v_{1}, v_{2}, \ldots, v_{a-1}$ and joining these to u_{1}. The graph G is shown in Figure 3.6.

Subcase a. Let $n-a+1$ be even. If $n-a+1=4$, then $d n_{\Delta f_{x}}(G)=a$ or $d n_{\Delta f_{x}}(G)=a-1$ according as $x=u_{1}$ or $x \in\left\{u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, \ldots, v_{a-1}\right\}$. If $n-a+1 \geq 6$, then $d n_{\Delta f_{x}}(G)=a$ or $d n_{\Delta f_{x}}(G)=a-1$ according as $x \in\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{(n-a+1) / 2}, u_{(n-a+5) / 2}, \ldots, u_{n-a}\right\}$ or $x \in\left\{u_{2}, u_{(n-a+3) / 2}, u_{n-a+1}\right.$, $\left.v_{1}, v_{2}, \ldots, v_{a-1}\right\}$.

Subcase b. Let $n-a+1$ be odd. If $n-a+1=3$, then $d n_{\Delta f_{x}}(G)=a$ or $d n_{\Delta f_{x}}(G)=a-1$ according as $x=u_{1}$ or $x \in\left\{u_{2}, u_{3}, v_{1}, v_{2}, \ldots, v_{a-1}\right\}$. If $n-a+1 \geq 5$, then $d n_{\Delta f_{x}}(G)=a$ or $d n_{\Delta f_{x}}(G)=a-1$ according as $x \in\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{n-a}\right\}$ or $x \in\left\{u_{2}, u_{n-a+1}, v_{1}, v_{2}, \ldots, v_{a-1}\right\}$. Thus $d n_{\Delta f_{x}}(G)=a$ or $d n_{\Delta f_{x}}(G)=a-1$ for every vertex x of G.

Case 3. Let $a=n-1$. Then $G=K_{1, n-1}$ has the desired properties.

Figure 3.6: G

Figure 3.7: G

Theorem 3.15. For any four positive integers a, b, c and d of with $2 \leq a \leq b \leq c \leq d$, there exists a connected graph G such that $d_{x}(G)=a$, $d n_{\Delta f_{x}}(G)=b, d m_{x}(G)=c$ and $g_{x}(G)=d$.

Proof. Let $2 \leq a \leq b \leq c \leq d$. Let $P: x, a, b, c, d, e, f$ be a path of order 7 and adding $a-1$ new vertices $v_{1}, v_{2}, v_{3}, v_{4}, \ldots . ., v_{a-1}$ to f. Let $P_{i}: g_{i}(1 \leq$ $i \leq b-a)$ be a $b-a$ copies of K_{1} and joining each $g_{i}(1 \leq i \leq b-a)$ in P_{i} to a and b in P. Let $P_{j}: h_{j}, k_{j}(1 \leq j \leq c-b)$ be a $c-b$ copies of a path of length 2 and joining each $h_{j}(1 \leq j \leq c-b)$ in P_{j} to b in P and joining each $k_{j}(1 \leq j \leq c-b)$ in P_{j} to c in P. Let $P_{k}: l_{k}, m_{k}(1 \leq k \leq d-c)$ be a
$d-c$ copies of a path of order 2 and joining each $l_{k}(1 \leq k \leq d-c)$ in P_{k} to c in P and joining $m_{k}(1 \leq k \leq d-c)$ in P_{k} to e in P. The resulting graph G is shown in Figure 3.7.

It is easily verify that $S_{1}=\left\{d, v_{1}, v_{2}, \ldots . ., v_{a-1}\right\}$ is a minimum x detour set, $S_{2}=S_{1} \cup\left\{g_{1}, g_{1}, g_{2}, \ldots \ldots, g_{b-a}\right\}$ is a x-triangle free detour basis, $S_{3}=S_{2} \cup\left\{h_{1}, h_{2}, h_{3}, \ldots . ., h_{c-b}\right\}$ is a minimum x-detour monophonic set and $S_{4}=S_{3} \cup\left\{l_{1}, l_{2}, l_{2}, \ldots . ., l_{d-c}\right\}$ is a minimum x-geodetic set. Thus $d n_{x}(G)=a, d n_{\Delta f_{x}}(G)=b, d m_{x}(G)=c$ and $g_{x}(G)=d$.

References

[1] G. Chartrand and P. Zhang, Introduction to Graph Theory. New Delhi: Tata McGraw-Hill, 2006.
[2] F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1969.
[3] I. Keerthi Asir and S. Athisayanathan, "Triangle Free Detour Distance in Graphs," J. Combin. Math. Combin. Comput., to be published.
[4] A. P. Santhakumaran and P. Titus, "The Vertex Detour Number of a Graph," AKCE J. Graphs. Combin., vol. 4, no. 1, pp. 99-112, 2007.
[5] A. P. Santhakumaran and P. Titus," Vertex Geodomination Number in Graphs," Bulletin of Kerala Mathematics Association, vol. 2, no. 2, pp. 45-57, 2005.
[6] S. Sethu Ramalingam, I. Keerthi Asir and S. Athisayanathan, "Triangle Free Detour Number of a Graph," submitted for publication.
[7] P. Titus and P. Balakrishnan, "The Vertex Detour Monophonic Number of a Graph," submitted for publication.

[^0]: *St. Xavier's College(Autonomous), Palayamkottai 627002; ssethusxc@gmail.com
 ${ }^{\dagger}$ St. Xavier's College(Autonomous), Palayamkottai 627002; asirsxc@gmail.com
 ${ }^{\ddagger}$ St. Xavier’s College(Autonomous), Palayamkottai 627002; athisxc@gmail.com

