

Mapana J Sci, 15, 3 (2016), 25–33 ISSN 0975-3303 | https://doi.org/ 10.12723/mjs.38.3 The k-Local Colouring of Jahangir Graphs and Some Characteristics of the k-Locally Rainbow Graphs

Esther Daniel*and P. Srinivasan[†]

Abstract

The *k*-local chromatic number of the Jahangir graphs and some characteristics of the *k*-locally rainbow graphs are studied in this article.

Keywords: *k*-local colouring, *k*-local chromatic number, Jahangir graph, *k*-local rainbow colouring, *k*-locally rainbow graphs, *k*-locally nearly rainbow graphs

Mathematics Subject Classification (2010): 05C10

1. Introduction

Graphs considered in this paper are undirected connected and simple graphs on *n* vertices. For standard notations and terminologies we follow Harary.[8] A *proper vertex colouring* of a graph is an assignment of colours to its vertices so that no two adjacent vertices have the same colour. The *chromatic number* $\chi(G)$ is defined as the minimum number of colours used in any colouring of G. A *k*-colouring of G uses *k* colours. The *value* of a colouring c of G is defined by $\chi(c) = \max \{c(v) : v \in V(G)\}$. Then $\chi(G) = \min \{\chi(c) : c \text{ is a colouring of } G\}$. The generalisations of graph colouring have been introduced and the variations are developed. The area of research in graph colouring is branching out in many directions. Chartrand *et al.* have introduced the study of local colourings of graphs.[7] The definition of graph colouring is generalised in the definition of *k*-local colouring.[1, 2, 5] For a graph G on *n* vertices, let $S \subseteq V(G)$, and m_s be the size of the induced subgraph $\langle S \rangle$ of *G*.

^{*}Lady Doak College, Madurai; estherdanielldc@gmail.com [†]The American College, Madurai; srinivasanp.ac@gmail.com

Mapana J Sci, 15, 3 (2016)

A *k*-local colouring of a graph G of order $n \ge 2$ and $2 \le k \le n$ is a function $c : V \to \mathbb{N}$ such that for each subset $S \subseteq V(G)$ with $2 \le |S| \le k$, there exists two distinct vertices $u, v \in S$ such that $|c(u) - c(v)| \ge m_s$, where m_s is the size of the induced subgraph $\langle S \rangle$ of *G*. The value of a *k*-local colouring *c* is the maximum colour it assigns to a vertex of G and is denoted by $lc_k(c)$. The *k*-local chromatic number of G is the minimum value of any k-local colouring of the graph G and is denoted by $lc_k(G)$. The k-local colouring of *G* is the generalisation of the colouring of *G*, since the condition on colours that can be assigned to the vertices of *G* depends on subgraphs of order k, where $2 \le k \le n$ rather than only on subgraphs of order 2.

A 3-local colouring *c* of a graph *G* is referred to as *local colouring of G*. $lc_3(c)$ is denoted as $\chi_l(c)$. If $\chi_l(c) = \chi_l(G)$, then *c* is called a minimum local colouring of *G* and the value of the minimum local colouring is called as the local chromatic number of *G*.

2. Preliminaries

The k-local colouring of a graph G is its colouring if k=2. The k-local chromatic number of a graph is 1 if and only if it is a totally disconnected graph. For every integer k with $2 \le k \le n$, it follows that $\chi(G) \le lc_k(G)$ and $lc_{k-1}(G) \le lc_k(G)$. A k-local colouring of a graph with $lc_k(G) = r$ need not use all r colours, but the colours 1 and r must be assigned at least once. If H is a subgraph of G, then $lc_k(H) \le lc_k(G)$. Chartrand *et al.* have stated the result for complementary colouring for 3-local colouring of graphs.[6] We have extended it for k-local colouring in [3].

3. The k-Local Chromatic Number of Jahangir Graphs

The Jahangir graph $J_{n,m}$ for $m \ge 3$, $n \ge 2$ is a graph on nm + 1 vertices consisting of a cycle C_{nm} with one additional vertex at the centre which is adjacent to m vertices of C_{nm} at a distance n to each other on C_{nm} .

Note 3.1. Let $J_{n,m}$ be a Jahangir graph with nm + 1 vertices and nm + m edges. Let the vertex set be $V = \{v_0, v_{1,0}, v_{1,1}, v_{1,2}, \dots, v_{1,n-1}, v_{2,0}, v_{2,1}, \dots, v_{2,n-1}, \dots, v_{m,0}, v_{m,1}, \dots, v_{m,n-1}\}$ where v_0 is the vertex at the centre which is adjacent to the *m* vertices $\{v_{1,0}, v_{2,0}, \dots, v_{m,0}\}$ and the edge set be $E = \{v_0v_{i,0}, v_{i,j}v_{i,j+1}/1 \le i \le m, 0 \le j \le n-2\} \cup \{v_{i,n-1}, v_{i+1,0}/1 \le i \le m-1\} \cup \{v_{m-1,n-1}v_{1,0}\}.$

Hereafter we will use the above notation.

Lemma 3.2. The k-local chromatic number of the Jahangir graph $J_{n,m}$, that is, $lc_k(J_{n,m}) \ge k + \lfloor \frac{k-2}{n} \rfloor$ where k is any integer such that $2 \le k \le |V(J_{n,m})|$.

Proof. Let $J_{n,m}$ be a Jahangir graph. Let S be a subset of $V(J_{n,m})$ with k vertices, where $2 \le k \le nm + 1$.

Case 1: Let $v_0 \in S$. If $S = \{v_0, v_{1,0}, v_{1,1}, v_{1,2}, \dots, v_{1,n-1}, v_{2,0}, v_{2,1}, \dots, v_{i,j}\}$, where $i = \lfloor \frac{k-2}{n} \rfloor + 1$ and $(k-2) \equiv j \mod n$. Except v_0 the remaining k-1 vertices form a path P_{k-1} . Here the *i* vertices $v_{1,0}, v_{2,0}, \dots, v_{i,0}$ are adjacent to v_0 and hence there are *i* edges. The path P_{k-1} has (k-2) edges. Therefore, $m_s = i + (k-2) = \lfloor \frac{k-2}{n} \rfloor + 1 + k - 2$. Hence $m_s = \lfloor \frac{k-2}{n} \rfloor + k - 1$. **Case 2:** Let $v_0 \notin S$. Suppose $S = \{v_{1,0}, v_{1,1}, v_{1,2}, \dots, v_{1,n-1}, v_{2,0}, v_{2,1}, \dots, v_{i,j}\}$ where $i = \lfloor \frac{k-1}{n} \rfloor + 1$, $1 \le i \le m$ and $(k-1) \equiv j \mod n$. The induced subgraph $\langle S \rangle$ of *G* is a path. Hence $m_s = k - 1$. Hence in both the cases $m_s \le \lfloor \frac{k-2}{n} \rfloor + k - 1$.

Similarly we can prove that, for any other k-subset *S* of $V(J_{n,m})$, $m_s \leq \lfloor \frac{k-2}{n} \rfloor + k - 1$. Hence $\lfloor \frac{k-2}{n} \rfloor + k - 1$ is the maximum value of m_s for all k-subset *S* of $V(J_{n,m})$. Therefore, $lc_k(J_{n,m}) \geq m_s + 1 = \lfloor \frac{k-2}{n} \rfloor + k$. Hence $lc_k(J_{n,m}) \geq \lfloor \frac{k-2}{n} \rfloor + k$.

Lemma 3.3. For the Jahangir graph $J_{n,m}$, $lc_k(J_{n,m}) \leq \lfloor \frac{k-2}{n} \rfloor + k$, where k is any integer such that $2 \leq k \leq |V(J_{n,m})|$ and n is even.

Proof. Let $J_{n,m}$ be a Jahangir graph. By Lemma 3.2, the maximum value of m_s for any k-subset S of $V(J_{n,m})$ is, $\lfloor \frac{k-2}{n} \rfloor + k - 1$. Let $r = m_s + 1 = \lfloor \frac{k-2}{n} \rfloor + k$ Define $c : V \to \mathbb{N}$ as follows: When n is even, $c(v_0) = 1$, for $1 \le i \le m$ and $1 \le j \le n$ $c(v_{i,j}) = \begin{cases} 1, \text{ if } j \equiv 1 \pmod{2} \\ c(v_{i,j}) = \end{cases}$

$$r, \text{ if } j \equiv 0 \pmod{2}$$

Suppose S contains the vertex v_0 and the vertex $v_{i,j}$ coloured with r then $|c(v_0) - c(v_{i,j})| = |1 - r| = r - 1 \ge m_s$. Suppose S contains the vertex v_0 and all the other vertices of S are coloured as 1, then $m_s = 0$ as the induced subgraph $\langle S \rangle$ of G, with the vertex v_0 and the vertices coloured by 1 is totally disconnected and $|c(v_0) - c(v_{i,j})| = 0 = m_s$. Suppose $v_0 \notin S$ and $v_{i,j}, v_{i,j+1} \in S$ for some i, then $|c(v_{i,j}) - c(v_{i,j+1})| = r - 1 \ge m_s$. Suppose $v_0 \notin S$ and no such vertices that are adjacent like $v_{i,j}, v_{i,j+1}$ exist in S then $m_s = 0$. Then for any two vertices $v_{i,j}, v_{k,l} \in S$, $|c(v_{k,l}) - c(v_{i,j})| = 0 = m_s$. Hence the k-local colour condition is satisfied for any subset $S \subseteq V(J_{n,m})$ where |S| = k. Hence c is a k-local colouring. Therefore, $lc_k(J_{n,m}) \le r$ when n is even.

By Lemma 3.2 and Lemma 3.3, we have

Theorem 3.4. The k-local chromatic number of the Jahangir graph $J_{n,m}$ is $k + \lfloor \frac{k-2}{n} \rfloor$ when *n* is even and *k* is any integer such that $2 \le k \le |V(J_{n,m})| = nm + 1$.

Lemma 3.5. For the Jahangir graph $J_{n,m}$, $lc_k(J_{n,m}) \leq \lfloor \frac{k-2}{n} \rfloor + k$, where k is any odd integer such that $3 \leq k \leq |V(J_{n,m})|$ and n is odd.

Proof. Let $J_{n,m}$ be a Jahangir graph. By Lemma 3.2, the maximum value of m_s for any k-subset S of $V(J_{n,m})$ is, $\lfloor \frac{k-2}{n} \rfloor + k - 1$. Let $r = m_s + 1 = \lfloor \frac{k-2}{n} \rfloor + k$. Let n and k be odd. Define $c : V \to \mathbb{N}$ as follows: $c(v_0) = 1$, for $1 \le i \le m$ and $1 \le j \le n$ $\begin{pmatrix} 1, & \text{if } j \equiv 1 \pmod{2} \end{pmatrix}$

$$c(v_{i,j}) = \begin{cases} r, \text{ if } j \equiv 0 \pmod{2} \text{ and } j \neq n-1 \\ \lceil \frac{r}{2} \rceil \text{ if } j = n-1 \end{cases}$$

As discussed in Lemma 3.3, when the k-subset *S* contains the vertices coloured as 1 and *r*, the k-local colour condition is satisfied whether $v_0 \in S$ or $v_0 \notin S$. Suppose *S* contains either the vertices coloured as 1 and $\lceil \frac{r}{2} \rceil$ only, or the vertices coloured as *r* and $\lceil \frac{r}{2} \rceil$ only, then in both the cases $m_s \leq \lfloor \frac{k}{2} \rfloor = \frac{k-1}{2}$ as *k* is odd. We discuss the following cases.

Case 1: When S contains the vertices coloured as 1 and $\lceil \frac{r}{2} \rceil$ only. Let $v_{i,j}$ and $v_{s,t} \in S$ be the two vertices with the colours as 1 and $\lceil \frac{r}{2} \rceil$

respectively. Then $|c(v_{s,t}) - c(v_{i,j})| = |\lceil \frac{r}{2} \rceil - 1| = \lceil \frac{k + \lfloor \frac{k-2}{2} \rfloor}{2} \rceil - 1 \ge m_s$ **Case 2:** When *S* contains the vertices coloured as *r* and $\lceil \frac{r}{2} \rceil$ only.

Let $v_{i,j}$ and $v_{s,t} \in S$ be the two vertices with the colours r and $\lceil \frac{r}{2} \rceil$ only. respectively. $|c(v_{i,j}) - c(v_{s,t})| = |r - \lceil \frac{r}{2} \rceil| > m_s = \frac{k-1}{2}$. Hence when k is odd the k-local colour condition is satisfied.

Hence the k-local colour condition is satisfied for any k-subset $S \subseteq V(J_{n,m})$, when *k* is odd. Hence *c* is a k-local colouring when *k* is odd and *n* is odd. Therefore, $lc_k(J_{n,m}) \leq r$ when *k* and *n* are odd where $r = k + \lfloor \frac{k-2}{n} \rfloor$.

By Lemma 3.2 and Lemma 3.5 we have

Theorem 3.6. The k-local chromatic number of the Jahangir graph $J_{n,m}$ is $k + \lfloor \frac{k-2}{n} \rfloor$ when *n* is odd and *k* is any odd integer such that $3 \le k \le |V(J_{n,m})| = nm + 1$.

Lemma 3.7. For the Jahangir graph $J_{n,m}$, when n is odd, $lc_k(J_{n,m}) \le r = \lfloor \frac{k-2}{n} \rfloor + k$, where k is any even integer such that $2 \le k \le |V(J_{n,m})|$ with the conditions either (i) m < r - 1 or (ii) when m > r - 1, $\lfloor \frac{k-2}{n} \rfloor \ge 1$.

Proof. Let $J_{n,m}$ be a Jahangir graph. By Lemma 3.2, the maximum value of m_s for any k-subset S of $V(J_{n,m})$ is, $\lfloor \frac{k-2}{n} \rfloor + k - 1$. Let $r = m_s + 1 = \lfloor \frac{k-2}{n} \rfloor + k$. Let n be odd and k be even. Define the k-local colouring c as in Lemma 3.5 to the Jahangir graph $J_{n,m}$. As discussed in Lemma 3.3, when the k-subset S contains the vertices coloured as 1 and r, the k-local colour condition is satisfied whether $v_0 \in S$ or $v_0 \notin S$.

Case 1: Let $\frac{k}{2} < m \le r - 1$. Redefine the colouring of the vertices 28

as follows: $c(v_{i,j}) = i + 1$ if $j = n - 1, 1 \le i \le m$ and the colouring of the other vertices be the same. If $m \ge \frac{k}{2}$, then we can choose the subset *S* that contains k vertices that are coloured as either 1 and i + 1 only, or the vertices coloured as *r* and i + 1 only then in both the cases $m_s \le \lfloor \frac{k}{2} \rfloor = \frac{k}{2}$ as *k* is even. We discuss the following cases. **Sub case i:**

When *S* contains the vertices coloured as 1 and *i*+1 only. Here $m_s \leq \frac{k}{2}$. There exists an $i \geq \frac{k}{2}$, such that $v_{i,n-1} \in S$. Let $v_{i,n-1}$ and $v_{s,t} \in S$ be the two vertices with the colours as i + 1 and 1 respectively. $|c(v_{s,t}) - c(v_{i,n-1})| = |1 - (i + 1)| = i \geq \frac{k}{2} = m_s$. Hence the k-local colour condition is satisfied.

Sub case ii: When *S* contains the vertices coloured as *r* and *i* + 1 only. There exists an $i \leq \frac{k}{2} - 1$, such that $v_{i,n-1} \in S$. Let $v_{i,n-1}$ and $v_{s,t} \in S$ be the two vertices with the colours i + 1 and *r* respectively. $|c(v_{i,n-1}) - c(v_{s,t})| = |i+1-r| = r-i-1 = k + \lfloor \frac{k-2}{n} \rfloor - i-1 \geq \frac{k}{2} + 1 + \lfloor \frac{k-2}{n} \rfloor - 1 \geq \frac{k}{2} \geq m_s$.

Case 2: Let $m \ge r - 1$ and $\lfloor \frac{k-2}{n} \rfloor \ge 1$. If $m \ge r - 1$, then we can choose the subset *S* that contains k vertices that are coloured as either 1 and $\lfloor \frac{r}{2} \rfloor$ only, or the vertices coloured as *r* and $\lfloor \frac{r}{2} \rfloor$ only then in both the cases $m_s \le \lfloor \frac{k}{2} \rfloor = \frac{k}{2}$ as *k* is even. We discuss the following sub cases.

Sub case i: When *S* contains the vertices coloured as 1 and $\lceil \frac{r}{2} \rceil$ only. Here $m_s = \frac{k}{2}$. Let $v_{i,j}$ and $v_{s,t} \in S$ be the two vertices with the colours as 1 and $\lceil \frac{r}{2} \rceil$ respectively. $|c(v_{s,t}) - c(v_{i,j})| = |\lceil \frac{r}{2} \rceil - 1| = \lceil \frac{k+\lfloor \frac{k-2}{n} \rceil}{2} \rceil - 1 \ge m_s$, as $\lfloor \frac{k-2}{n} \rfloor \ge 1$. Hence the k-local colour condition is satisfied.

Sub case ii: When *S* contains the vertices coloured as *r* and $\lceil \frac{r}{2} \rceil$ only. Let $v_{i,j}$ and $v_{s,t} \in S$ be the two vertices with the colours *r* and $\lceil \frac{r}{2} \rceil$ respectively. $|c(v_{i,j}) - c(v_{s,t})| = |r - \lceil \frac{r}{2} \rceil| = k + \lfloor \frac{k-2}{n} \rfloor - \lceil \frac{k+\lfloor \frac{k-2}{n} \rfloor}{2} \rceil \ge \frac{k}{2} = m_s$. **Case 3:** When $m < \frac{k}{2}$. The two cases discussed in Case 1 and Case 2 do not arise here. The k-local colour condition is satisfied for any k-subset of *S*.

Hence when *k* is even and m < r - 1 the k-local colour condition is satisfied. When *k* is even, $m \ge r - 1$ and $\lfloor \frac{k-2}{n} \rfloor \ge 1$, the k-local colour condition is satisfied.

Hence the k-local colour condition is satisfied for any k-subset $S \subseteq V(J_{n,m})$, when k is even with the conditions either (i) m < r - 1 or (ii) when $m \ge r - 1$, $\lfloor \frac{k-2}{n} \rfloor \ge 1$. Hence c is a k-local colouring when k is even and n is odd with the conditions either (i) m < r - 1 or (ii) when $m \ge r - 1$, $\lfloor \frac{k-2}{n} \rfloor \ge 1$. Therefore, $lc_k(J_{n,m}) \le r$ when n is odd and k is even with the conditions either (i) m < r - 1 or (ii) when $m \ge r - 1$, $\lfloor \frac{k-2}{n} \rfloor \ge 1$. \Box

By Lemma 3.2 and Lemma 3.7, we have

Theorem 3.8. The k-local chromatic number of the Jahangir graph $J_{n,m}$ is $k + \lfloor \frac{k-2}{n} \rfloor$ when n is odd and k is even with the conditions (i) m < r - 1

Mapana J Sci, 15, 3 (2016)

and (ii) when $m \ge r - 1$, $\lfloor \frac{k-2}{n} \rfloor \ge 1$.

Remark 3.9. The k-local chromatic number of the Jahangir graph is to be obtained when *n* is odd, *k* is even, m > r - 1 and $\lfloor \frac{k-2}{n} \rfloor = 0$. When $\lfloor \frac{k-2}{n} \rfloor = 0$, m > k, as $r = k + \lfloor \frac{k-2}{n} \rfloor$. Hence the k-local chromatic number of the Jahangir graph to be determined when *n* is odd, *k* is even, $\lfloor \frac{k-2}{n} \rfloor = 0$ and m > k.

Lemma 3.10. The k-local chromatic number of the Jahangir graph $J_{n,m}$ is less than or equal to k+1 when n is odd, k is even, k < m and $\lfloor \frac{k-2}{n} \rfloor = 0$.

Proof. Let *n* be odd and *k* be even. Let $J_{n,m}$ be a Jahangir graph with k < m and $\lfloor \frac{k-2}{n} \rfloor = 0$. Let $r = k + 1 + \lfloor \frac{k-2}{n} \rfloor = k + 1$. Define the colouring of the Jahangir graph as in Lemma 3.5 with the above value r = k + 1. As discussed in Lemma 3.3, when the k-subset *S* contains the vertices coloured as 1 and *r*, the k-local colour condition is satisfied whether $v_0 \in S$ or $v_0 \notin S$.

Case 1: When *S* contains the vertices coloured as 1 and $\lceil \frac{r}{2} \rceil$ only. Here $m_s \leq \frac{k}{2}$. Let $v_{i,j}$ and $v_{s,t} \in S$ be the two vertices with the colours as 1 and $\lceil \frac{r}{2} \rceil$ respectively. $|c(v_{s,t}) - c(v_{i,j})| = |\lceil \frac{r}{2} \rceil - 1| = \lceil \frac{k+1}{2} \rceil - 1 = \frac{k+2}{2} - 1$, (as *k* is even) = $\frac{k}{2} \geq m_s$.

Case 2: When \tilde{S} contains the vertices coloured as r and $\lceil \frac{r}{2} \rceil$ only. $m_s \leq \frac{k}{2}$. Let $v_{i,j}$ and $v_{s,t} \in S$ be the two vertices with the colours r and $\lceil \frac{r}{2} \rceil$ respectively. $|c(v_{i,j}) - c(v_{s,t})| = |r - \lceil \frac{r}{2} \rceil| = k + 1 - \lceil \frac{k+1}{2} \rceil = k + 1 - \lfloor \frac{k+2}{2} \rceil = \frac{k}{2} \geq m_s$. Hence the k-local colour condition is satisfied for any k-subset $S \subseteq V(J_{n,m})$, when n is odd, k is even, k < m and $\lfloor \frac{k-2}{n} \rfloor = 0$. Hence c is a k-local colouring when n is odd, k is even, k < m and $\lfloor \frac{k-2}{n} \rfloor = 0$. Therefore, $lc_k(J_{n,m}) \leq k + 1$ when n is odd, k is even, k < m and $\lfloor \frac{k-2}{n} \rfloor = 0$.

By Lemma 3.2 and Lemma 3.10, we have

Theorem 3.11. The k-local chromatic number of the Jahangir graph $J_{n,m}$ is $k \leq lc_k(J_{n,m}) \leq k+1$ when *n* is odd, *k* is even, k < m and $\lfloor \frac{k-2}{n} \rfloor = 0$.

4. Some Characteristics of k-Locally rainbow Graphs

In this section we consider the k-locally rainbow graphs. Local rainbow colouring and locally rainbow graphs are defined by Chartrand *et al.* [7] The k-local rainbow colouring, k-locally rainbow graphs and k-locally nearly rainbow graphs that are defined in [4] are given below.

Definition A: A k-local colouring *c* of *G* is defined as a *k*-local rainbow colouring if for each integer *i* with $1 \le i \le r = lc_k(G)$ there is a vertex *v* of *G* for which c(v) = i, that is, *c* uses all of the colours $1, 2, \dots, r$.

Esther and Srinivasan

Definition B: A graph G is defined as *k*-locally rainbow if every minimum k-local colouring c of G is a k-local rainbow colouring.

Definition C: A graph *G* with $lc_k(G) = \rho$ is called a *k*-locally nearly rainbow if there exists a minimal k-local colouring *c* of *G* such that for each *i* with $1 \le i \le \rho$, there is a vertex *v* of *G* for which c(v) = i.

That is, A graph G is called a *k*-locally nearly rainbow if there exists a minimal k-local colouring of G which is a k-local rainbow colouring. Some important observations are stated below.

Observation 4.1. Any odd cycle of order > 3 is a locally rainbow graph.

Observation 4.2. There exists k-locally rainbow graphs G such that $\chi(G) = lc_k(G)$. When k = 3, $\chi(G) = lc_k(G) = \chi_l(G)$, where G is an odd cycle of order > 3.

Observation 4.3. Any path P_n has a k-local rainbow colouring. The paths need not be k-locally rainbow graphs, hence they are nearly k-locally rainbow graphs.

Observation 4.4. C_4 is not a locally rainbow graph, and it is not at all a nearly locally rainbow graph.

Observation 4.5. Any complete graph K_n is neither locally rainbow nor nearly locally rainbow graphs.

Observation 4.6. Let G be a k-locally rainbow graph on n vertices and let $lc_k(G) = r$. Then $V(G) = V_1 \cup V_2 \cup \cdots \cup V_r$ where V_i is the set of all vertices coloured by i where $1 \le i \le r$. we have,

- 1. Since G is a k-locally rainbow graph each V_i is a nonempty set and they are independent in G.
- 2. It is obvious that $r \leq n$.
- 3. $u \in V_i$ can be adjacent to only one vertex $v \in V_{i+1}$. Otherwise, suppose the vertex $u \in V_i$ is adjacent to two vertices $v, w \in V_{i+1}$, then the set $S = \{u, v, w\}$ does not satisfy the k-local colour condition.
- 4. $u_1 \in V_1, u_2 \in V_2, \dots, u_r \in V_r$ cannot form a cycle C_r as again they are not satisfying the k-local colour condition when k = r.

Theorem 4.7. Let G be a graph with local chromatic number $3(\chi_l(G) = 3)$, then G is a triangle free graph.

Proof. Let *G* be a graph on *n* vertices with local chromatic number 3. Suppose *G* has a triangle. Let *H* be the subgraph which is a triangle formed by the vertices $u, v, w \in G$. The local chromatic number of the triangle *H* is 4. As *H* is a subgraph of *G*, $\chi_l(H) \leq \chi_l(G)$, but $\chi_l(H) = 4$ where as $\chi_l(G) = 3$. Hence *G* cannot have a triangle. Therefore, if $\chi_l(G) = 3$, then *G* is a triangle free graph.

Mapana J Sci, **15**, 3 (2016)

The converse of the above theorem is not true. We have the following example.

Example 4.8. Grötzsch graph is a triangle free graph, but the local chromatic number of it is 4.[6] It is a locally rainbow graph.

Suppose *G* is a k-locally rainbow colourable graph of order *n*, the following result gives a strategy to find an independent set of size *n* in $G \times K_r$.

Theorem 4.9. Let G be a graph on n vertices and is k-locally rainbow colourable with $lc_k(G) = r$, then the cartesian product $G \times K_r$ has an independent set of size n.

Proof. Let $lc_k(G) = r$ where *G* is k-locally rainbow colourable. Let $c_1 : V \to \{1, 2, 3, \dots, r\}$ be the k-local coloring ,then $V(G) = V_1 \cup V_2 \cup \dots \cup V_r$ where V_i is the set of all vertices coloured by $i, 1 \le i \le r$. Consider the complete graph K_r , on *r* vertices v_1, v_2, \dots, v_r , Let $c_2 : V(K_r) \to \{1, 2, \dots, r\}$ be the colouring defined by, $c_2(v_i) = i, v_i \in V(K_r)$ for $1 \le i \le r$. Consider the caretisian product $G \times K_r$. Let *S* be a subset of $V(G \times K_r)$ and define *S* as $\{(u, v) \in V(G \times K_r)/c_1(u) = c_2(v)\}$. As each vertex of *G* has a colour from the set $\{1, 2, 3, \dots, r\}$, and *S* has *n* pair of vertices (u, v) we have, |S| = n.

Claim: *S* is an independent set. Suppose $(u_1, v_1), (u_2, v_2) \in S$ and there is an edge $(u_1, v_1)(u_2, v_2)$ in $V(G \times K_r)$ then by the definition of the cartesian product, there are two possibilities.

(1) $u_1 = u_2$ and v_1v_2 is an edge in \overline{K}_r . But $u_1 = u_2$ implies $c_1(u_1) = c_1(u_2)$. As $(u_1, v_1), (u_2, v_2) \in S$ and by the definition of S, $c_1(u_1) = c_2(v_1) = c_1(u_2) = c_2(v_2)$, which is a contradiction, as $c_2(v_1)$ and $c_2(v_2)$ are not equal in K_r .

(2) u_1u_2 is an edge in *G* and $v_1 = v_2$. As u_1u_2 is an edge in *G* they will have different colours (say) $i, j \in \{1, 2, \dots, r\}$. respectively. As $(u_1, v_1), (u_2, v_2) \in S$ and by the definition of *S*, $c_2(v_1) = c_1(u_1) = i, c_1(u_2) = j = c_2(v_2)$, which is a contradiction, as $v_1 = v_2$. Therefore, there cannot be an edge between any two vertices in *S* and hence *S* is an independent set.

5. Conclusion

In this article the *k*-local chromatic number of the Jahangir graph $J_{n,m}$ is determined. Some characteristics of *k*-locally rainbow graphs and rainbow graphs are studied.

References

- [1] B. Omoomi and A. Pourmiri, "Local Coloring of Kneser graphs," *Discrete Math.* vol. 308, pp. 5922-5927, 2008. doi:10.1016/j.disc.2007.11.002
- [2] B. Omoomi and A. Pourmiri, "On the local colorings of graphs," *Ars Combinatoria*, vol. 86, pp. 147-159, 2008.
- [3] E. Daniel and P. Srinivasan, "A Note on k-Local Colouring of Some Special Graphs," *Int. J. Math. Trends and Technol.* vol. 33 part 1, pp. 42-48, May 2016.
- [4] E. Daniel and P. Srinivasan, "k-Local Colouring of Friendship Graphs," *J. Graph Labeling*, vol. 2, no. 2, pp. 136-141, 2016.
- [5] G. Chartrand and P. Zhang, *Chromatic Graph Theory*. Chapman and Hall, CRC Press, 2009.
- [6] G. Chartrand *et al.*, "Local Colourings of Graphs," *Utilitas Mathematica*, vol. 67, pp. 107-120, 2005.
- [7] G. Chartrand et al., "On Local colorings of graphs," Congressus Numerantium, vol. 163, pp. 207-221, 2003.
- [8] F. Harary, *Graph Theory*. New Delhi: Narosa, 2001.