

Some Results on Rosa-type Labelings of Graphs

R. Rajarajachozhan*

Abstract

Labelings that are used in graph decompositions are called *Rosa-type* labelings. The γ -labeling of an almost-bipartite graph is a natural generalization of an α -labeling of a bipartite graph. It is known that if a bipartite graph *G* with *m* edges possesses an α -labeling or an almost-bipartite graph *G* with *m* edges possesses a γ -labeling, then the complete graph K_{2mx+1} admits a cyclic *G*-decomposition. A variation of an α -labeling is introduced in this paper by allowing additional vertex labels and some conditions on edge labels and show that whenever a bipartite graph *G* admits such a labeling, then there exists a supergraph *H* of *G* such that *H* is almost-bipartite and *H* has a γ -labeling.

Keywords: Graph Labeling, Rosa-type labeling, α -labeling, γ -labeling, ρ -labeling

Mathematics Subject Classification (2010): 05C78

1. Introduction

Let *G* be a simple connected bipartite graph with bipartition (*A*, *B*) and *m* edges. Let *V*(*G*) and *E*(*G*) denote the vertex set of *G* and the edge set of *G*, respectively. Let $f : V(G) \rightarrow \{0, 1, 2, ...\}$ be a one-to-one function. Let $f(V(G)) = \{f(v) : v \in V(G)\}$. Define a function $\overline{f} : E(G) \rightarrow \{1, 2, 3, ...\}$ by $\overline{f}(e) = |f(u) - f(v)|$, where $e = uv \in E(G)$. We call f(v) and $\overline{f}(e)$ labels of the vertex *v* and edge *e* respectively. Let $\overline{E}(G) = \{\overline{f}(e) : e \in E(G)\}$.

If *a* and *b* are integers with a < b, we denote $\{a, a + 1, a + 2, ..., b\}$ by [a, b].

Rosa introduced a hierarchy of labelings including α -labeling of a bipartite graph.[3] Blinco *et al.* introduced the notation of γ -labeling

*Research Scholar, Annamalai University, Tamil Nadu; r.rajarajachozhan@gmail.com

Received: March 2016. Reviewed: May 2016

of an almost-bipartite graph as a natural generalization of an α -labeling of a bipartite graph.[1]

Joseph Gallian gives a comprehensive and updated dynamic survey on general graph labeling.[2]

Consider the following conditions.

 $\ell_1:f(V(G))\subseteq [0,2m],$

$$\ell_2: f(V(G)) \subseteq [0,m],$$

 $\ell_3 : \bar{E}(G) = \{x_1, x_2, \dots, x_m\}$, where for each $i \in [1, m]$ either $x_i = i$ or $x_i = 2m + 1 - i$,

 $\ell_4: \bar{E}(G) = [1,m].$

 ℓ_5 : there exists an integer λ such that $f(a) \leq \lambda$ for all $a \in A$ and $f(b) > \lambda$ for all $b \in B$.

A labeling satisfying the conditions ℓ_1 and ℓ_3 is called a ρ -labeling. A labeling that satisfies ℓ_2 , ℓ_4 and ℓ_5 is called an α -labeling.

A non-bipartite graph *G* is said to be *almost-bipartite* if G - e is bipartite for some $e \in E(G)$. If *G* is almost-bipartite with $e = \hat{b}c$, then *G* is tripartite and V(G) can be partitioned into three sets *A*, *B* and $\{c\}$ such that $\hat{b} \in B$ and *e* is the only edge joining an element of *B* to *c*.

Let *G* be an almost-bipartite graph with *m* edges with vertex tripartition *A*, *B*, $\{c\}$ as above. A labeling *h* of the vertices of *G* is called a γ -labeling of *G* if the following conditions hold.

 g_1 : The function *h* is a ρ -labeling of *G*.

 g_2 : If av is an edge of G with $a \in A$, then h(a) < h(v).

 $g_3: h(c) - h(\hat{b}) = m.$

It is known that

(i) Let *G* be a graph with *m* edges. There exists a cyclic *G*-decomposition of K_{2m+1} if and only if *G* has a ρ -labeling.[3]

(ii) Let *G* be a bipartite graph with *m* edges that has an α -labeling. Then, for all positive integers *x*, *G* divides K_{2mx+1} .[3]

(iii) Let \hat{G} be an almost-bipartite graph with *m* edges having a γ -labeling. Then, for all positive integers *x*, *G* divides K_{2mx+1} .[1]

2. Results

If \overline{f} is one-to-one and there exists an integer λ such that $f(a) \leq \lambda$ for all $a \in A$ and $f(b) > \lambda$ for all $b \in B$, then we say that f is an $\alpha(\overline{E}(G))$ -labeling of G. When f(V(G)) = [0,m] an $\overline{E}(G) = [1,m]$, and $\alpha(\overline{E}(G))$ -labeling of G is the usual α -labeling of G.

We now prove some results related to α -labeling and λ -labeling.

Theorem 2.1. Let f be an $\alpha(\overline{E}(G))$ -labeling of G with

$$f(V(G)) \subseteq [0, m+1]$$

Rosa-type Labelings

and

$$\bar{E}(G) = [1, m+1] \setminus \{d\},\$$

where $d \in [2, m]$. Suppose

$$d = m + 2 - \lambda.$$

Then there exist vertices $a \in A$ and $b \in B$, such that the almost-bipartite graph G^{*} obtained from G by defining

 $V(G^*) = V(G) \cup \{v\}$

and

 $E(G^*) = E(G) \cup \{av, vb\}$

has a γ -labeling.

Proof. As $d \neq 1$ and $d \neq m + 1$, there exist edges e' = x'y' with $x' \in A$, $y' \in B$, $f(x') = \lambda$, $f(y') = \lambda + 1$, $\overline{f}(e') = 1$ and e'' = x''y'' with $x'' \in A$, $y'' \in B, f(x'') = 0, f(y'') = m + 1$ and $\bar{f}(e'') = m + 1$. Take a = x'' and b = y'. Then, f(a) = 0 and $f(b) = \lambda + 1$.

Define

 $g: V(G^*) \rightarrow [0, 2m+4]$

by

g(w) = f(w) for every $w \in V(G)$ and $g(v) = \lambda + m + 3.$ Then ģ

$$\bar{g}(av) = (2m+5) - (\lambda + m + 3) = m + 2 - \lambda = d$$

and

$$\bar{g}(vb) = (\lambda + m + 3) - (\lambda + 1) = m + 2.$$

Hence,

$$\bar{E}(G^*) = \bar{E}(G) \cup \{d, m+2\} = [1, m+2].$$

Clearly, g is one-to-one and hence g is a γ -labeling of G^* .

Theorem 2.2. Let f be an $\alpha(\overline{E}(G))$ -labeling of G with

$$f(V(G)) \subseteq [0, m+1]$$

and

$$\bar{E}(G) = [1, m+1] \setminus \{d\}$$

Suppose

$$d = m + 2 - \lambda$$

37

Mapana J Sci, **15**, 3 (2016)

and there exists an *i* in $[0, \lambda]$ such that both *i* and $\lambda + 1 + i$ are in f(V(G)). Then there exist vertices $a \in A$ and $b \in B$, such that the almost-bipartite graph G^* obtained from G by defining

$$V(G^*) = V(G) \cup \{v\}$$

and

$$E(G^*) = E(G) \cup \{av, vb\}$$

has a γ -labeling.

Proof. Take *a* and *b* so that f(a) = i and $f(b) = \lambda + 1 + i$. Define

$$g: V(G^*) \to [0, 2m+4]$$

by

g(w) = f(w) for every $w \in V(G)$ and $g(v) = \lambda + m + 3 + i.$

Then

$$\bar{g}(av) = (2m + 5 + i) - (\lambda + m + 3 + i) = m + 2 - \lambda = d$$

and

$$\bar{g}(vb) = (\lambda + m + 3 + i) - (\lambda + 1 + i) = m + 2.$$

Hence,

$$\bar{E}(G^*) = \bar{E}(G) \cup \{d, m+2\} = [1, m+2].$$

Clearly, *g* is one-to-one and hence *g* is a γ -labeling of G^* .

Remark 2.3. Theorem 2.2 is a generalization of Theorem 2.1. To see this, take i = 0 in Theorem 2.2.

Theorem 2.4. Let f be an $\alpha(\overline{E}(G))$ -labeling of G with

$$f(V(G)) \subseteq [0, m+3] \setminus \{m+2\}$$

and

$$\bar{E}(G) = [1, m+2] \setminus \{d, m+4-d\}$$

for some $d \in [2, m + 2]$. Then, the almost-bipartite graph $G + K_3$, the disjoint union of G and K_3 , has a γ -labeling.

Proof. Let

 $V(G+K_3) = V(G) \cup \{u, v, w\}$

and

$$E(G+K_3) = E(G) \cup \{uv, vw, wu\}.$$

Define

 $g: V(G+K_3) \to [0, 2m+6]$

Rajarajachozhan

by

$$g(x) = f(x) + d + 1$$
 for every $x \in V(G)$,
 $g(u) = 0$,
 $g(v) = d$,
and
 $g(w) = m + d + 3$.
Then,

$$\bar{g}(uv) = d,$$

$$\bar{g}(vw) = (m+d+3) - d = m+3,$$

and

$$\bar{g}(wu) = (2m+7) - (m+d+3) = m+4 - d.$$

Hence,

$$\bar{E}(G+K_3)\,=\,\bar{E}(G)\,\cup\,\{d,m+4-d,m+3\}\,=\,[1,m+3].$$

Clearly, g is one-to-one and hence g is a γ -labeling of $G + K_3$.

Theorem 2.5. Let f be an $\alpha(\overline{E}(G))$ -labeling of G with

 $f(V(G)) \subseteq [0, m+3] \setminus \{m+1\}$

and

$$\bar{E}(G) = [1, m+2] \setminus \{d, m+4-d\}$$

for some $d \in [2, m + 1]$. Then, the almost-bipartite graph $G + K_3$, the disjoint union of G and K_3 , has a γ -labeling.

Proof. In the proof of previous theorem, take g(x) = f(x) + d + 2 for every $x \in V(G)$.

For integers $r \ge s \ge 2$, let $T_{r,s}$ be the double star with

 $V(T_{r,s}) = \{x, y, x_1, x_2, \dots, x_r, y_1, y_2, \dots, y_s\}$

and

$$E(T_{r,s}) = \{xy, xx_1, xx_2, \dots, xx_r, yy_1, yy_2, \dots, yy_s\}.$$

Then, m = r + s + 1.

We now see two illustrations associated with the above theorems.

Illustration 1 Define

$$f: V(T_{r,s}) \to [0, m+1]$$

by

f(x) = 0, $f(y_i) = i$ for every $i \in [1, s],$ f(y) = s + 1, and

 ${f(x_1), f(x_2), \dots, f(x_r)} = [s+2, r+s+2] \setminus {r+3}.$ So $\lambda = s$ and $d = m+2 - \lambda = (r+s+1) + 2 - s = r+3.$

Then *f* satisfies the hypothesis of Theorem 2.1. Hence, by the proof of Theorem 2.1, the almost-bipartite graph $T_{r,s}^*$ obtained from $T_{r,s}$ by defining

$$V(T_{r,s}^*) = V(T_{r,s}) \cup \{v\}$$

and

$$E(T_{r,s}^*) = E(T_{r,s}) \cup \{xv, vy\}$$

has a γ -labeling. Consequently, for all positive integers x, $T_{r,s}^*$ divides the complete graph $K_{2(r+s+3)x+1}$.

We apply Theorem 2.2 with i = 1.

As $r \ge s$, $s + 2 \ne r + 3$, and hence $f(x_1) = s + 2$. So, f satisfies the hypothesis of Theorem 2.2. By the proof of Theorem 2.2, the almost-bipartite graph $T_{r,s}^{**}$ obtained from $T_{r,s}$ by defining

$$V(T_{r,s}^{**}) = V(T_{r,s}) \cup \{v\}$$

and

$$E(T_{r,s}^{**}) = E(T_{r,s}) \cup \{y_1v, vx_1\}$$

has a γ -labeling. Consequently, for all positive integers x, $T_{r,s}^{**}$ divides the complete graph $K_{2(r+s+3)x+1}$.

Illustration 2 Define

$$f: V(T_{r,s}) \to [0, m+3]$$

by

f(x) = 0,{ $f(y_1), f(y_2), \dots, f(y_s)$ }, = [1, s + 1] \ {s - 1}, f(y) = s + 2, and

 ${f(x_1), f(x_2), \ldots, f(x_r)}, = [s+3, r+s+4] \setminus {r+s+2}.$ Then *f* satisfies the hypothesis of Theorem 2.3 with d = 3. Hence,

by Theorem 2.3, the almost-bipartite graph $T_{r,s} + K_3$ has a γ -labeling. Consequently, for all positive integers x, $T_{r,s} + K_3$ divides the complete graph $K_{2(r+s+4)x+1}$.

The results obtained may be helpful to enlarge the known class of γ -labelable graphs.

Acknowledgement

The author wishes to thank R. Sampathkumar for his useful comments.

References

- A. Blinco, S. I. El-Zanati and C. V. Eynden, "On the cyclic decomposition of complete graphs into almost-bipartite graphs," *Discrete Math.*, vol. 284, pp. 71-81, 2004.
- [2] J. A. Gallian, "A dynamic survey of graph labeling," DS#6, *Electron. J. Combin.*, pp. 1-408, Dec. 2016.
- [3] A. Rosa, "On certain valuations of the vertices of a graph," in Theory of Graphs, *Int. Sympos.*, Rome, 1966, ed. P. Rosenstiehl, Dunod, Paris; Gordon and Breach, New York, 1967, pp. 349-355.