

Mapana J Sci, 15, 3 (2016), 43–53 ISSN 0975-3303 | https://doi.org/ 10.12723/mjs.38.5 Weak Edge Detour Number of a

# Connected Weak Edge Detour Number of a Graph

#### J. M. Prabakar\* and S. Athisayanathan $^{\dagger}$

## Abstract

Certain general properties of the *detour distance*, *weak edge detour set*, *connected weak edge detour set*, *connected weak edge detour set*, *connected weak edge detour number* and *connected weak edge detour basis* of graphs are studied in this paper. Their relationship with the detour diameter is discussed. It is proved that for each pair of integers k and n with  $2 \le k \le n$ , there exists a connected graph G of order n with  $cdn_w(G) = k$ . It is also proved that for any three positive integers R, D, k such that  $k \ge D$  and  $R < D \le 2R$ , there exists a connected graph G with  $rad_D G = R$ ,  $diam_D G = D$  and  $cdn_w(G) = k$ .

**Keywords:** Detour, Detour number, Weak edge detour number, Connected weak edge detour number

Mathematics Subject Classification (2010): 05C12

### 1. Introduction

Graphs are discrete structures that represent objects and their relations among them. For a graph G = (V, E), with the vertex (object) set V and edge set, i.e., the set of relations, E, the order and size of Gare denoted by n and m respectively. For basic definitions and terminologies we refer to [4, 1]. Throughout this paper G denotes a finite undirected connected simple graph with at least two vertices.

For vertices u and v in G, the distance d(u, v) is the length of a shortest u-v path in G. A u-v path of length d(u, v) is called a u-v geodesic. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices

Received: April 2016. Reviewed: May 2016

<sup>\*</sup>St. Xavier's College (Autonomous), Palayamkottai 627 002; jmpsxc@gmail.com <sup>†</sup>St. Xavier's College; athisxc@gmail.com

of *G* is the *radius*, *rad G* and the maximum eccentricity is its *diameter*, *diam G* of *G*.

The detour distance D(u, v) is the length of a longest u - v path in G for vertices u and v in G. A u - v path of length D(u, v) is called a u - v detour. For a vertex v of G, the detour eccentricity  $e_D(v)$  is the detour distance between v and a vertex farthest from v. The detour radius,  $rad_D G$  of G is the minimum detour eccentricity among the vertices of G, while the detour diameter,  $diam_D G$  of G is the maximum detour eccentricity among the vertices of G. These concepts were studied by Chartrand *et al.*[2]

A vertex *x* is said to lie on a u - v detour *P* if *x* is a vertex of *P* including the vertices *u* and *v*. A set  $S \subseteq V$  is called a *detour set* if every vertex *v* in *G* lies on a detour joining a pair of vertices of *S*. The *detour number* dn(G) of *G* is the minimum order of a detour sets and any detour set of order dn(G) is called a *detour basis* of *G*. A vertex *v* that belongs to every detour basis of *G* is a *detour vertex* in *G*. If *G* has a unique detour basis *S*, then every vertex in *S* is a detour vertex in *G*.[3]

A set  $S \subseteq V$  is called a *weak edge detour set* of G if every edge in G has both its ends in S or it lies on a detour joining a pair of vertices of S. The *weak edge detour number*  $dn_w(G)$  of G is the minimum order of its weak edge detour sets and any weak edge set of order  $dn_w(G)$  is called a *weak edge detour basis* of G. These concepts were studied by Santhakumaran and Athisayanathan.[5]

A set  $S \subseteq V$  is called a *connected detour set* of G if S is a detour set of G and the subgraph G(S) induced by S is connected. The *connected detour number* cdn(G) of G is the minimum order of its connected detour sets and any connected detour set of order cdn(G) is called *connected detour basis* of G.[6] This motivated us to introduce and investigate the concepts of *connected weak edge detour set* and *connected weak edge detour number* of a graph G.

The following theorems are used in this paper for proving the results.

**Theorem 1.1.** [3] Every end-vertex of a non-trivial connected graph G belongs to every detour set of G. Also if the set S of all end-vertices of G is a detour set, then S is the unique detour basis for G.

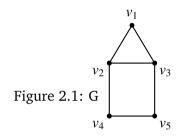
**Theorem 1.2.** [5] Every end-vertex of a non-trivial connected graph G belongs to every weak edge detour set of G. Also if the set S of all end-vertices of G is a weak edge detour set, then S is the unique weak edge detour basis for G.

**Theorem 1.3.** [5] If T is a non-trivial tree with k end-vertices, then  $dn(T) = dn_w(T) = k$ .

#### 2. Connected Weak Edge Detour Number of a Graph

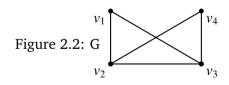
**Definition 2.1.** Let G = (V, E) be a connected graph with at least two vertices. A set  $S \subseteq V$  is a connected weak edge detour set of G if S is a weak edge detour set of G and the subgraph  $\langle S \rangle$  induced by S is connected. The connected weak edge detour number  $cdn_w(G)$  of G is the minimum order of its connected weak edge detour sets and any connected weak edge detour set of order  $cdn_w(G)$  is called a connected weak edge detour basis of G.

**Example 2.2.** For the graph G given in Figure 2.1, it is clear that no two element subset of V is a connected weak edge detour set of G.The set  $S = \{v_1, v_2, v_3\}$  is a connected weak edge detour basis of G so that  $cdn_w(G) = 3$ . The set  $S_1 = \{v_1, v_2, v_4\}$  and  $S_2 = \{v_1, v_3, v_5\}$  are also connected weak edge detour bases of G. Thus there can be more than one connected weak edge detour basis for a graph G.



**Remark 2.3.** Every connected weak edge detour set is a weak edge detour set but the converse is not true. For the graph G given in figure 2.1, the set  $U = \{v_1, v_4, v_5\}$  is a weak edge detour set but not a connected weak edge detour set of G.

**Example 2.4.** For the graph G given in Figure 2.2, the set  $S_1 = \{v_2, v_3\}$  is a connected weak edge detour basis for G so that  $cdn_w(G) = dn_w(G) = 2$ .



**Theorem 2.5.** For any graph G of order  $n \ge 2$ ,  $2 \le cdn_w(G) \le n$ .

*Proof.* A connected weak edge detour set needs at least two vertices so that  $cdn_w(G) \ge 2$  and the set of all vertices of *G* is a connected weak edge detour set of *G* so that  $cdn_w(G) \le n$ . Thus  $2 \le cdn_w(G) \le n$ .  $\Box$ 

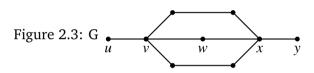
**Remark 2.6.** The bounds in Theorem 2.5 are sharp. For the complete graph  $K_2$ ,  $cdn_w(K_2) = 2$ . The set of all vertices of path  $P_n$   $(n \ge 2)$  is

Mapana J Sci, 15, 3 (2016)

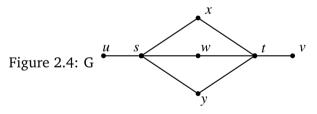
its unique connected weak edge detour set so that  $cdn_w(G) = n$ . Also the inequalities in Theorem 2.5 can be strict. For the graph G given in Figure 2.1, n = 5,  $cdn_w(G) = 3$  so that  $2 < cdn_w(G) < n$ . Thus the complete graph  $K_2$  has the smallest possible connected weak edge detour number 2 and the non-trivial paths have the largest possible connected weak edge detour number n.

**Definition 2.7.** A vertex v in a graph G is a connected weak edge detour vertex if v belongs to every connected weak edge detour basis of G. If G has a unique connected weak edge detour basis S, then every vertex in S is a connected weak edge detour vertex of G.

**Example 2.8.** For the graph G given in Figure 2.3,  $S = \{u, v, w, x, y\}$  is the unique connected weak edge detour basis so that every vertex of S is a connected weak edge detour vertex of G.



**Example 2.9.** For the graph G given Figure 2.4,  $S_1 = \{u, s, w, t, v\}$ ,  $S_2 = \{u, s, x, t, v\}$  and  $S_3 = \{u, s, y, t, v\}$  are the connected weak edge detour bases of G so that u, s, t and v are the connected weak edge detour vertices of G.



In the following theorems we show that there are certain vertices in a non-trival connected graph G that are connected weak edge detour vertices of G.

**Theorem 2.10.** Every end-vertex of a non-trivial connected graph G belongs to every connected weak edge detour set of G.

*Proof.* Let *v* be an end-vertex of *G* and *uv* an edge in *G* incident with *v*. Then *uv* is either an initial edge or the terminal edge of any detour containing the edge *uv*. Hence it follows that *v* belongs to every connected weak edge detour set of *G*.  $\Box$ 

**Theorem 2.11.** Let G be a connected graph with cut-vertices and S a connected weak edge detour set of G. Then for any cut-vertex v of G, every component of G - v contains an element of S.

*Proof.* Let *v* be a cut-vertex of *G* such that one of the components, say *C* of *G* − *v* contains no vertex of *S*. Then by Theorem 2.10, *C* does not contain any end-vertex of *G*. Hence *C* contains at least one edge, say *uw*. Since *S* is a connected weak edge detour set there exists vertices  $x, y \in S$  such that *uw* lies on some x - y detour  $P : x = u_0, u_1, \ldots, u, w, \ldots, u_t = y$  in *G* or both the ends *u* and *w* of the edge *uw* are in *S*. Suppose that *uw* lies on the detour *P*. Let  $P_1$  be the x - u subpath of *P* and  $P_2$  be the u - y subpath of *P*. Since *v* is a cut-vertex of *G* both  $P_1$  and  $P_2$  contain *v* so that *P* is not a detour, which is a contradiction. Suppose that *u* and *w* are in *S*, then *C* contains vertices of *S*, which is again a contradiction.

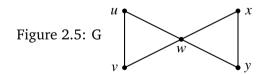
**Theorem 2.12.** Let G be a connected graph with cut-vertices. Then every cut-vertex of G belongs to every connected weak edge detour set of G.

*Proof.* Let *G* be a connected graph and *v* be a cut-vertex of *G*. Let  $G_1$ ,  $G_2$ , ...,  $G_k$  ( $k \ge 2$ ) be the components of G - v. Let *S* be any connected weak edge detour set of *G*. Then by Theorem 2.11, *S* contains at least one element from each component  $G_i$  ( $1 \le i \le k$ ) of G - v. Since  $\langle S \rangle$  is connected it follows that  $v \in S$ .

**Corollary 2.13.** All the end-vertices and the cut-vertices of a connected graph *G* belong to every connected weak edge detour set of *G*.

*Proof.* Proof is immediate from the Theorems 2.10 and 2.12.

**Remark 2.14.** For the graph G given in Figure 2.5,  $S_1 = \{u, w, x\}$ ,  $S_2 = \{u, w, y\}$ ,  $S_3 = \{v, w, x\}$  and  $S_4 = \{v, w, y\}$  are the four connected weak edge detour bases. The cut vertex w belongs to every connected weak edge detour basis so that the cut-vertex w is the unique connected weak edge detour vertex of G.



**Corollary 2.15.** If T is a tree of order  $n \ge 2$ , then  $cdn_w(T) = n$ .

*Proof.* Corollary 2.13 gives the proof.

**Corollary 2.16.** For any connected graph G with k end-vertices and l cut-vertices,  $max\{2, k + l\} \le cdn_w(G) \le n$ .

*Proof.* The Theorem 2.5 and the corollary 2.13 give the proof.  $\Box$ 

47

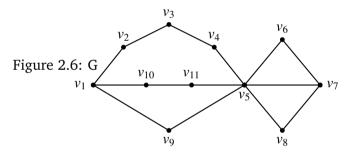
Mapana J Sci, 15, 3 (2016)

For the graph *H* and an integer  $k \ge 1$ , we write *kH* for the union of the *k* disjoint copies of *H*.

**Theorem 2.17.** Let  $G = (K_{n_1} \cup K_{n_2} \cup \ldots \cup K_{n_r} \cup kK_1) + v$  be a block graph of order  $n \ge 4$  such that  $r \ge 1$ , each  $n_i \ge 2$  and  $n_1 + n_2 + \ldots + n_r + k = n - 1$ . Then  $cdn_w(G) = r + k + 1$ .

*Proof.* Let  $u_1, u_2, \ldots u_k$  be the end-vertices of *G*. Let *S* be any connected weak edge detour set of *G*. Then by Corollary 2.13,  $v \in S$  and  $u_i \in S(1 \le i \le k)$ . Also by Theorem 2.11, *S* contains a vertex from each component  $K_{n_i}$   $(1 \le i \le r)$ . Now choose exactly one vertex  $v_i$  from each  $K_{n_i}$  such that  $v_i \in S$ . Then  $|S| \ge r + k + 1$ . Let  $T = \{v, v_1, v_2, \ldots v_r, u_1, u_2, \ldots, u_k\}$ . Since every edge in *G* has both its ends in *T* or it lies on a detour joining a pair of vertices of *T*, it follows that *T* is a weak edge detour basis of *G*. Also, since  $\langle T \rangle$  is connected,  $cdn_w(G) = r + k + 1$ .

**Remark 2.18.** If the blocks of the graph G in Theorem 2.17 are not complete, then the theorem is not true. For the graph G given in Figure 2.6 there are two blocks and  $\{v_4, v_9, v_5, v_7\}$  is a connected weak edge detour basis so that  $cdn_w(G) = 4$ .



**Theorem 2.19.** Let G be the complete graph  $K_n$   $(n \ge 2)$ . Then a set  $S \subseteq V$  is a connected weak edge detour basis of G if and only if S consists of any two vertices of G.

*Proof.* Let *G* be the complete graph  $K_n$   $(n \ge 2)$  and  $S = \{u, v\}$  be any set of two vertices of *G*. It is clear that D(u, v) = n - 1. Let  $xy \in E$ . If xy = uv, then both its ends are in *S*. Let  $xy \neq uv$ . If  $x \neq u$  and  $y \neq v$ , then the edge xy lies on the u - v detour P : u, x, y, ..., v of length n - 1. If x = u and  $y \neq v$ , then the edge xy lies on the u - v detour P : u = x, y, ..., v of length n - 1. Hence *S* is a connected weak edge detour of *G*. Since |S| = 2, *S* is a connected weak edge detour basis of *G*.

Conversely, let *S* be a connected weak edge detour basis of *G*. Let *S*' be any set consisting of two vertices of *G*. Then as in the first part of this theorem *S*' is a connected weak edge detour basis of *G*. Hence |S| = |S'| = 2 and it follows that *S* consists of any two vertices of *G*.  $\Box$ 

**Theorem 2.20.** Let G be a cycle of order  $n \ge 3$ . Then a set  $S \subseteq V$  is a connected weak edge detour basis of G if and only if S consists of any two adjacent vertices of G.

*Proof.* Let  $S = \{u, v\}$  be any set of two adjacent vertices of *G*. It is clear that D(u, v) = n-1. Then every edge  $e \neq uv$  of *G* lies on the u-v detour and the both ends of the edge uv belong to *S* so that *S* is a connected weak edge detour set of *G*. Since |S| = 2, *S* is a connected weak edge detour basis of *G*.

Conversely, assmume that *S* is a connected weak edge detour basis of *G*. Let *S'* be any set of two adjacent vertices of *G*. Then as in the first part of this theorem *S'* is a connected weak edge detour basis of *G*. Hence |S| = |S'| = 2. Let  $S = \{u, v\} \subseteq V$ . If *u* and *v* are not adjacent, it is clear that *u* and *v* are not connected. Thus *S* consists of any two adjacent vertices of *G*.

**Theorem 2.21.** Let G be the complete bipartite graph  $K_{m,n}$   $(2 \le m \le n)$ . Then a set  $S \subseteq V$  is a connected weak edge detour basis of G if and only if S consists of any two adjacent vertices of G.

*Proof.* Let *X* and *Y* be the bipartite sets of *G* with |X| = m and |Y| = n. Let  $S = \{u, v\}$ , where  $u \in X$  and  $v \in Y$  be any two adjacent vertices of *G*. It is clear that D(u, v) = 2m - 1. Then every edge  $e \neq uv$  of *G* lies on the *uv*-detour and the both ends of the edge *uv* belongs to *S* so that *S* is a connected weak edge detour set of *G*. Since |S| = 2, *S* is a connected weak edge detour basis of *G*.

Conversely, assume that *S* is a connected weak edge detour basis of *G*. Let *S'* be any set of two adjacent vertices of *G*. Then as in the first part of this theorem *S'* is a connected weak edge detour basis of *G*. Hence |S| = |S'| = 2. Let  $S = \{u, v\} \subseteq V$ . If *u* and  $v \in X$  or *Y* it is clear that *u* and *v* are not connected. Thus *S* consists of any two adjacent vertices of *G*.

**Corollary 2.22.** (a) If G is the complete graph  $K_n$ , then  $cdn_w(G) = 2$ .

- (b) If G is the complete bipartite graph  $K_{m,n}$   $(2 \le m \le n)$ , then  $cdn_w(G) = 2$ .
- (c) If G is the cycle  $C_n$ , then  $cdn_w(G) = 2$ .
- *Proof.* (a) It follows from Theorem 2.19.
  - (b) It follows from Theorem 2.21.
  - (c) It follows from Theorem 2.10.

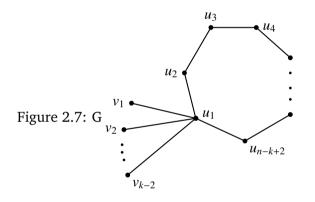
The following theorems give realization results.

**Theorem 2.23.** For each pair of integer k and n with  $2 \le k \le n$ , there exists a connected graph G of order n with  $cdn_w(G) = k$ .

*Proof.* **Case 1.** k = n. Then any tree of order *n* has the desired property by Corollary 2.15.

**Case 2.** 2 = k < n, the cycle  $C_n$  has the desired property by Corollary 2.22 (*c*).

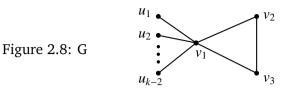
**Case 3.** 2 < k < n. Let *G* be the graph obtained from the cycle  $C_{n-k+2} : u_1, u_2, \dots, u_{n-k+2}, u_1$  of order n - k + 2 by adding k - 2 new vertices  $v_1, v_2, \dots, v_{k-2}$  and joining each vertex  $v_i$   $(1 \le i \le k - 2)$  to  $u_1$ . The resulting graph *G* is connected of order *n* and is shown in Figure 2.7. Now we show that  $cdn_w(G) = k$ . Let  $S = \{u_1, v_1, v_2, \dots, v_{k-2}\}$  be the set of all end-vertices together with the cut-vertex  $u_1$  of *G*. It is clear that *S* is not a connected weak edge detour set of *G*. Let  $T = S \cup \{u_2\}$ . Then every edge of *G* has both its ends in *T* or it lies on a detour joining a pair of vertices of *T* and also <T> is a connected so that *T* is a connected weak edge detour basis of *G*, so that  $cdn_w(G) = k$ .  $\Box$ 



**Theorem 2.24.** For each positive integer  $k \ge 2$  there exists a connected graph *G* and a vertex *v* of degree *k* in *G* such that *v* belongs to a connected weak edge detour basis of *G* and  $cdn_w(G) = k$ .

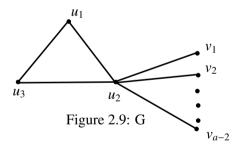
*Proof.* **Case 1.** k = 2, the complete graph  $K_3$  has a desired properties by Corollary 2.22 (*a*).

**Case 2.** k > 2, let *G* be the graph obtained from the complete graph  $K_3$ , where  $V(K_3) = \{v_1, v_2, v_3\}$  by adding k-2 new vertices  $u_1, u_2, ..., u_{k-2}$  and joining  $u_i(1 \le i \le k-2)$  to  $v_1$ . The resulting graph *G* is connected of order *n* and is shown in the Figure 2.8. Then  $deg_Gv_1 = k$ . Let  $S = \{u_1, u_2, ..., u_{k-2}, v_1\}$  be the set of all end-verties and cut-verties. However, by Corollary 2.13, *S* is not a connected weak edge detour set of *G*. Let  $T = S \cup \{v\}$ , where  $v \in \{v_2, v_3\}$  is a vertex in  $K_3$ . Then *T* is a connected weak edge detour basis of *G* and hence so that  $cdn_w(G) = k$ .



**Theorem 2.25.** For every pair of positive integer a, b with  $2 \le a \le b$ , there exists a connected graph G such that  $dn_w(G) = a$  and  $cdn_w(G) = b$ .

*Proof.* **Case 1:** a = b, we have the following two sub cases. **Sub case (i):** a = 2, the complete graph  $K_2$  has the desired property. **Sub case (ii):** a > 2. Let  $C_3 : u_1, u_2, u_3$  be the cycle of length 3. Now, by adding a - 2 new vertices  $v_1, v_2, \dots, v_{a-2}$  and joining the vertex  $u_2$ as shown in the Figure 2.9. Let  $S = \{v_1, v_2, \dots, v_{a-2}, u_2\}$  be the set of all end vertices and cut-verties of *G*. It is clear that *S* is not a weak edge detour set of *G*. Let  $T = S \cup \{u\}$ , where  $u \in \{u_1, u_3\}$  is a vertex in  $C_3$ . Then *T* is a weak edge detour basis of *G* so that  $dn_w(G) = a$ . Also the sub graph  $\langle T \rangle$  induced by *T* is connected so that  $cdn_w(G) = a$ .



**Case 2:** a < b. Let *G* be any tree with *a* end -vertices and b - a cut-vertices. Then by Theorem 1.3,  $dn_w(G) = a$  and by Corollary 2.15,  $cdn_w(G) = b$ .

# 3. Connected Weak Edge Detour Number and Detour Diameter of a graph

In [3], an upper bound for the detour number, of a graph is given in terms of its order and detour diameter *D* as follows: **Proposition** *A*[3] If *G* is a non-trival connected graph of order  $n \ge 3$ 

and detour diameter *D*, then  $dn(G) \le n - D + 1$ .

**Remark 3.1.** In the case of weak edge detour number  $dn_w(G)$  of a graph *G* it is show in [5] that, there are graphs *G* for which  $dn_w(G) = n - D + 1$ ,

 $dn_w(G) > n - D + 1$  and  $dn_w(G) < n - D + 1$ . Similarly, in the case of connected weak edge detour number  $cdn_w(G)$  of the graph G, we show that there are graphs for which  $cdn_w(G) = n - D + 1$ ,  $cdn_w(G) < n - D + 1$  and  $cdn_w(G) > n - D + 1$ . For the graph G given in Figure 3.1(a), n = 6, D = 4,  $cdn_w(G) = 5$  so that  $cdn_w(G) > n - D + 1$ . For the graph G given in Figure 3.1(b), n = 8, D = 4 and  $cdn_w(G) = 5$  so that  $cdn_w(G) = 5$  so that  $cdn_w(G) = 2$  so that  $cdn_w(G) < n - D + 1$ .

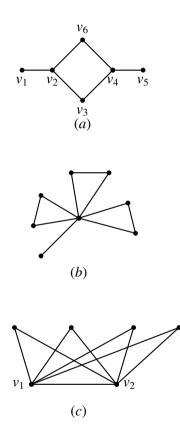


Figure 3.1: G

**Theorem 3.2.** Let *G* be a connected graph of order  $n \ge 2$ . If D = n - 1, then  $cdn_w(G) \ge n - D + 1$ .

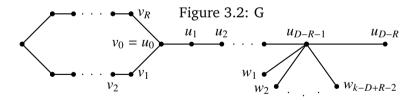
*Proof.* For any graph G,  $cdn_w(G) \ge 2$ . Since D = n - 1, we have n - D + 1 = 2 and so  $cdn_w(G) \ge n - D + 1$ .

**Remark 3.3.** The converse of the Theorem 3.2 is not true. For the graph *G* given in Figure 3.1 (*b*), as in the Remark 3.1,  $cdn_w(G) = n - D + 1$ , but  $D \neq n - 1$ . Also for the graph *G* given in Figure 3.1 (*a*), as in the Remark 3.1,  $cdn_w(G) > n - D + 1$ , but  $D \neq n - 1$ .

**Theorem 3.4.** Let R, D, k be three positive integers such that k > D and  $R < D \le 2R$ . Then there exists a connected graph G such that  $rad_D G = R$ ,  $diam_D G = D$  and  $cdn_w(G) = k$ .

*Proof.* **Case 1:** When R = 1 and D = 2, let  $G = K_{1,k-1}$ . Clearly  $rad_D G = 1$ ,  $diam_D G = 2$  and by corollary 2.15, cdn(G) = k.

**Case 2:** When  $R \ge 2$  and  $R < D \le 2R$ , we construct a graph *G* with the desired properties as follows: Let  $C_{R+1} : v_0, v_1, \ldots, v_R, v_0$  be a cycle of order R + 1 and let  $P_{D-R+1} : u_0, u_1, \ldots, u_{D-R}$  be a path of order D - R + 1. Let *H* be the graph obtained from  $C_{R+1}$  and  $P_{D-R+1}$  by identifying  $v_0$  of  $C_{R+1}$  with  $u_0$  of  $P_{D-R+1}$ . The required graph *G* is obtained from *H* by adding k - D + R - 2 new vertices  $w_1, w_2, \ldots, w_{k-D+R-2}$  to *H* and joining each  $w_i(1 \le i \le k - D + R - 2)$  to the vertex  $u_{D-R-1}$  and is shown in Figure 3.2. Clearly, *G* is connected such that  $rad_DG = R$  and  $diam_DG = D$ . Now, we show that  $cdn_w(G) = k$ . Let  $S = \{u_0, u_1, \ldots, u_{D-R-1}, u_{D-R}, w_1, w_2, \ldots, w_{k-D+R-2}\}$  be the set of all cut-vertices and end-vertices. However, by Corollary 2.13, *S* is not a connected weak edge detour set of *G*. Let  $T = S \cup \{v\}$ , where  $v \in \{v_R, v_1\}$  is a vertex in  $C_{R+1}$ . Then *T* is a connected weak edge detour basis of *G* so that  $cdn_w(G) = k$ .



#### References

- [1] F. Buckley and F. Harary, *Distance in Graphs*. Reading, MA: Addison-Wesley, 1990.
- [2] G. Chartrand, H. Escuadro and P. Zhang, "Detour Distance in Graphs," J. Combin. Math. Combin. Comput., vol. 53, pp. 75-94, 2005.
- [3] G. Chartrand, L. John and P. Zhang, "The Detour Number of a graph," *Util. Math.* vol. 64, pp. 97-113, 2003.
- [4] F. Harary, Graph Theory. New Delhi: Narosa, 1997.
- [5] A. P. Santhakumaran and S. Athisayanathan, "Weak edge detour number of a graph," Ars Combin., vol. 98, pp. 33-61, 2011.
- [6] A. P. Santhakumaran and S. Athisayanathan, "The connected detour number of a graph," *J. Combin. Math. Combin. Comput.*, vol. 69, pp. 205-218, 2009.