
Received: March 2011; Revised: August 2011 63

ISSN 0975-3303
Mapana J Sci, 10, 2(2011),63-74

Parallel Communicating String - Graph P
System

Meena Parvathy Sankar* and N.G. David**

Abstract

The concept of parallel communicating grammar systems
generating string languages is extended to string-graph P
systems and their generative power is studied. It is also
established that for every language L generated by a
parallel communicating grammar system there exists an
equivalent parallel communicating string-graph P system
generating the string-graph language corresponding to L.

Keywords: String Grammar, PC Grammar System, Membrane
Computing

1. Introduction

Membrane computing is an area of computer science aiming to
abstract computing ideas and models from the structure and the
functioning of living cells, as well as from the way the cells are
organized in tissues or higher order structures, also known as P
System.

The membrane structure of a P system is a hierarchical
arrangement of membranes, embedded in a skin membrane - the
one which separates the system from its environment. A
membrane without any membrane inside is called elementary.
Each membrane defines a region. A membrane structure is
pictorially represented by an Euler-Venn diagram or it can be

* Madras Christian College, Chennai – 600 059; meenaparvathysankar@gmail.com
**Madras Christian College, Chennai – 600 059; ngdmcc@gmail.com.

 https://doi.org/10.12725/mjs.19.6

Meena Parvathy Sankar and N.G. David ISSN 0975-3303

64

mathematically represented by a tree, or by a corresponding string
of matching parenthesis.

Each region consists of a multiset of objects and a set of evolution
rules. The objects are represented by symbols from a given
alphabet. An evolution rule from region r is in general of the form

in out herejca cb d d , and it says that a copy of the object a, in the

presence of a copy of the catalyst c (this is an object which is never
modified, it only assists the evolution of other objects), is replaced
by a copy of the object b and two copies of the object d. Moreover,
the copy of b has to immediately enter the inner membrane of
region r labeled by j (hence to enter region j), a copy of object d is
sent out through the membrane of region r, and a copy of d remains
in region r.

In natural languages, there occur phenomena like multiple
agreements, crossed agreements and replication. These aspects are
represented in formal language theory by the three languages K1 =
{anbncn / n ≥ 1}, K2 = {anbmcndm / m, n ≥ 1} and K3 = {ww / w  {a, b}+}
respectively. It is known that these languages can be generated by
grammar systems with regular grammar components.

A grammar system is a set of grammars working together,
according to a specified protocol, to generate one language. There
are two basic classes of grammar systems: sequential and parallel.

A cooperating distributed (CD) grammar system is a sequential
grammar system, in which all component grammars have a
common sentential form. Whereas, a parallel communicating (PC)
grammar system is parallel in nature and, each component has its
own sentential form. Within each time unit each component
applies a rule, rewriting its own sentential form. The key feature of
a PC grammar system is its ‘communications through queries’
mechanism. Special (query) symbols are provided with each
system pointing to a component of the system. When a
component i introduces the query symbol Qj, the current sentential
form of the component j will be sent to the component i, replacing
all the occurrences of Qj. The grammar j resumes rewriting
beginning again from its axiom.

Mapana J Sci, 10, 2(2011) Parallel Communicating String-Graph P System

65

On the other hand, string-graphs (or linear graphs or labeled paths)
represent strings over an alphabet and hyper-graph grammars
generating string-graph languages are well studied in the literature
[4]. In this paper, we define string-graph P system as an outcome
of string-graphs, PC grammar system and P system and provide
some results.

2. Basic Concepts

In this section, we review the concepts of grammar systems,
membrane systems, and string graph grammars.

2.1 Grammar System

In this section, we recall the concepts related to PC grammar
system [1, 2].

Definition 2.1.1 A PC grammar system of degree n  1, is an (n+3)
tuple = (N, K, T, (S1, P1), (S2, P2), …, (Sn , Pn)), where N is a non
terminal alphabet, T is a terminal alphabet, K = {Q1, Q2, …, Qn} (the
sets N, K, T are mutually disjoint), Pi is a finite set of rewriting rules
over VΓ = N  K  T and Si  N, for all 1  i  n.

The sets Pi , 1  i  n, are called the components of the system, and
the elements Q1, Q2, …, Qn of K are called query symbols; the index
i of Qi points to the ith component Pi of .

Given a PC grammar system  = (N, K, T, (S1, P1), (S2, P2), …,(Sn,
Pn)), for two n-tuples (x1, x2, …, xn), (y1, y2 ,..., yn), with xi, yi  V*, 1
 i  n, where x1  T*, we write (x1, x2, …, xn)  (y1, y2, ..., yn), if one
of the following cases holds:

(i) For each i, 1  i  n, xik = 0, 1  i  n, and for each i, 1  i  n, we
have either xi  yi by a rule in Pi, or xi  yi  T*.

(ii) There is i, 1  i  n such that xi k  0. Let for each i,
1 2 11 2 ...i i i t i ttx z Q z Q z Q z  , t  1, for zj  (NT)*, 1  i  t+1. If

| | 0i kjx  , for all j, 1  j  t, then 1 2 11 2 ...i i i t i tty z x z x z x z  and
i ij jy S , 1  j  t. If for some j, 1  j  t, | | 0i kjx  , then yi = xi.

For all i, 1  i  n, such that yi is not specified above, we have yi =
xi.

A PC grammar system deadlocks in two cases:

Meena Parvathy Sankar and N.G. David ISSN 0975-3303

66

(1) when no query symbol is present, a component xi of the
current configuration (x1, x2, …, xn) is not a terminal string and no
rule of pi can be applied to it. (This can happen both after a
rewriting and after a communication), and

(2) when a circular query appears: 1iP introduces 2iQ , 2iP

introduces 3iQ , and so on until
1kiP


 introduces ikQ , and ikP

introduces 1iQ no derivation is possible (the communication has
priority), but no communication is possible (only strings without
occurrences of query symbols are communicated).

Definition 2.1.2 The language generated by a PC grammar system
 is L() = {x  T* / (S1, S2, …, Sn) * (x, 2, …, n), i  V*, 2  i 
n}.

Let  = (N, K, T, (S1, P1), (S2, P2), …, (Sn, Pn)) be a PC grammar system. If
only P1 is allowed to introduce query symbols (formally, Pi  (NT)* 
(NT)* for 2  i  n), then we say that  is a centralized PC grammar
system, otherwise  is non-centralized,

A PC grammar system is said to be returning (to axiom) if, after
communicating, each component which has sent its string to
another component returns to axiom.

A PC grammar system is non-returning if after communicating, the
component does not return to its axiom, but rather it continues to
process the current string.

A PC grammar system is said to be regular, linear, context-free,
context-sensitive, -free, etc. when the rules in its components are
of the corresponding types.

2.2 Membrane System

In this section, we review the notions of P system and Rewriting P
system [3].

Definition 2.2.1 A membrane system called a P system is a
construct  = (V, T, C, , w1, w2, …, wm, (R1,1), …, (Rm,m)), where V
is an alphabet –its elements are called objects; T  V (the output
alphabet); C  V – T (catalysts);  is a membrane structure

Mapana J Sci, 10, 2(2011) Parallel Communicating String-Graph P System

67

consisting of m membranes injectively labeled by the elements of a
given region of m labels; m is called the degree of ; wi, 1  i  m,
are strings which represents multisets over V associated with the
regions 1, 2, …, m of .

An evolution rule is a pair (u, v) written as u  v, where u is a
string over V and v = v or v = v, where v is a string over
{ , , / ,1 }

jhere out ina a a a V j m   , and  is a special symbol not in

V. The length of u is called the radius of the rule u  v. Ri, 1  j 
m, are finite sets of evolution rules over V each Ri is associated with
the region i of ; i is a partial order relation over Ri, called a
priority relation.

Definition 2.2.2 A rewriting P system of degree n ≥ 1 is a construct
 = (V, µ, M1, …, Mn, (R1,ρ1) ,…, (Rn,ρn), i0), where V is an alphabet,
µ is a membrane structure consisting of n membranes (labeled with
1, 2, …, n), Mi, ni 1 are finite languages over V, Ri, ni 1 , are
finite sets of context free evolution rules. The rules of the form X 
v(tar), where X is a symbol of V and v = v or v = v, or v = vτ , where
v is a string over V and δ, τ are symbols not in V. tar{here, out}
 {inm| nm 1 }, represents the target membrane, (i.e.) the
membrane where the string produced with this rule will go. ρi,

ni 1 , are partial order relations over Ri representing priorities
among rules , i0 is the output membrane.

The membrane structure  and the finite languages M1, …, Mn
constitute the initial configuration of the system. Membranes can
have two different thickness levels. We can pass from one
configuration to another by applying in parallel the evolution rules
to all strings which can be rewritten, obeying the priority relations.
The set of strings generated are collected in a designated
membrane, the output one, and hence the language generated by 
.

2.3 String Graph Grammar

 In this section, we provide the necessary definitions related
to the study of string graph grammar. For the unexplained
notions, we refer to [4].

Meena Parvathy Sankar and N.G. David ISSN 0975-3303

68

Definition 2.3.1 Let C be an arbitrary, but fixed set, called set of
labels (or colors). A (directed hyperedge-labeled) hypergraph over
C is a system (V, E, s, t, l) where V is a finite set of nodes (or
vertices), E is a finite set of hyperedges andVEs *:  *: VEt 
are two mappings assigning a sequence of sources s(e) and a
sequence of targets t(e) to each e  E, and l : E C is a mapping
labeling each hyperedge.

For eE, the set of nodes occurring in the sequence att(e) = s(e).t(e)
is called the set of attachment nodes of e and is denoted by att(e).

A hyperedge eE is called an (m, n) – edge for some m,nN if
｜s(e)｜= m and |t(e)｜= n. The pair (m, n) is the type of e, denoted
by type(e).

Definition 2.3.2 A multi-pointed hypergraph over C is a system H
= (V, E, s, t, l, begin, end) where (V, E, s, t, l) is a hypergraph over C
and begin, end V*, components of H are denoted by VH, EH, sH, tH,
lH, beginH, endH, respectively. The set of all multi-pointed
hypergraphs over C is denoted by HC.

For H HC, the set of nodes occurring in the sequence extH =
beginH. endH is called the set of external nodes of H and is denoted
by EXTH.

H  HC is said to be an (m, n) – hypergraph for some m, n  N if
beginH= m and endH = n. The pair (m, n) is the type of H, denoted
by type(H).

An (m, n) hypergraph H over C is said to be an (m, n) graph if VH 
 1 and all hyperedges of H are (1, 1) edges. The set of all (1, 1)
graphs over C is denoted by GC.

Definition 2.3.3 H  HC is said to be a singleton if VH = EXTH and
|EH|= 1. In this case, e(H) refers to the single hyperedge of H and
l(H) to its label.

A singleton H with EH = {e}, sH(e) = beginH, and tH(e) = endH is said to
be a handle. If lH(e) = A, type(e) = (m, n) for some m ,nN, and the
nodes in extH = beginH.endH are pairwise distinct, then H is said to be
an (m,n) – handle induced by A and is denoted by
(A, (m, n))• or A(m, n)•

Mapana J Sci, 10, 2(2011) Parallel Communicating String-Graph P System

69

Definition 2.3.4 A (1, 1) hypergraph H over C is called a string
graph if it is of the form H = ({v0, v1, …, vn}, {e1, …, en}, s, t, l, (v0, vn))
where v0, v1,…, vn are pair wise distinct, s(ei) = vi–1, and t(ei) = vi for i
= 1, 2, …, n. If w = l(e1), …, l(en), then the (1, 1) hypergraph is called
string graph induced by w and it is denoted by w*.

A string graph of the form

 a1 a2 a3 an

provides a unique graph representation of the string a1 a2 … an 
C+.

Definition 2.3.5 A hypergraph language L is said to be a string-
graph language if all H L are string graphs. The class of all string-
graph languages is denoted by L string.

Definition 2.3.6 A hyperedge replacement grammar HRG = (N, T,
P, Z) is said to be context–free string–graph grammar if the right
hand sides of the productions in P as well as the axiom Z are string
graphs. The class of all string-graph languages generated by a
context-free string–graph grammar is denoted by CFL.

Fact 2.3.7 [4]

 The string graph language L = {(anbncn) / n  1} cannot be
generated by a hypergraph grammar of order < 4.

3. String-graph P system

In this section, we extend the concept of parallel communicating
grammar system generating string languages to string-graph P
system and study its generative power.

Definition 3.1 A string-graph P system is a construct  =
(N, K, T, , w1, w2,…, wm, R1, R2,…, Rm) where N is a set of
nonterminals; T is a set of terminals, distinct from N; K = {Q1, Q2,
…, Qn}, is a distinct subset of N, called the set of query symbols;  is
a membrane structure consisting of m membranes injectively
labeled by the elements of a given region of m labels; wi is a string-

Meena Parvathy Sankar and N.G. David ISSN 0975-3303

70

graph associated with the region i, 1  i  m of ; Ri are the string-
graph rewriting rules associated with the region i, 1  i  m of .

Theorem 3.1 For every language L generated by a PC grammar
system there exists an equivalent parallel communicating string-
graph P system generating the string-graph language
corresponding to L.

Proof Consider a PC grammar system Γ = (N, K, T, (S1, P1), (S2,
P2),…, (Sn, Pn)) with degree n 1, generating a language L. We give
below the method of constructing an equivalent parallel
communicating string-graph P system generating the string-graph
language L● .

The required PC string-graph P system is ∏ = (N, K, T, µ, w1, w2,

…,wn, R1, R2, …,R n), where N, T, K are same as in Γ, µ is the membrane
structure of the regions 1, 2, …, n: [1[2]2[3]3…]1. wi = (Si)●, the initial
string-graph present in the region i and Ri contains the string-graph
rewriting rules corresponding to the string rules of Pi in Γ for i = 1,
2, …, n.

Initially, the derivation starts with the axiom Si, in the region i, and
continuing the derivation with rules of Ri, for each i = 1, 2, …, n.
Only the skin membrane produces the query symbols using the
rules in R1. When the skin membrane produces the query symbol
Qi, for some i, it performs the communication step of replacing the
query symbol Qi by the communicated string which is derived in
region i.

After performing a sequence of steps, and if there is no query
symbol present in the skin membrane the corresponding string-
graph is sent out of the membrane and collected in the language.

It can be easily seen that corresponding to a successful derivation
in Γ, there exists a corresponding successful derivation in the
string-graph P system ∏.

Example 3.1 illustrates the Theorem 3.1.

Example 3.1

Consider the string-graph P system П = (N, K, T, µ, w1, w2, w3, R1,
R2, R3), where N = {S1, S1′, S2, S3, Q2, Q3}, T = {a, b, c}, µ = [1 [2]2 [3]3]1,

Mapana J Sci, 10, 2(2011) Parallel Communicating String-Graph P System

71

K = {Q2, Q3} is the set of query symbols, w1, w2, w3 are the initial
string-graphs present in regions 1, 2 and 3 respectively and the
string-graph rewriting rules R1, R2, R3 are defined as follows:

R1= {S1::=begin end ,

 S1 ::=begin end ,

S1 ::=begin end ,

 S1::=begin end ,

S1'::= begin end ,

 S1'::= begin end ,

 S2 ::= begin end ,

 S3 ::= begin end }

R2 = S2 ::= {begin end}

R3 = S3 ::= { begin end }

Meena Parvathy Sankar and N.G. David ISSN 0975-3303

72

 First, we start with (S1, S2, S3). Applying the third rule of R1
first and then the fifth rule in R1and the unique rules in R2, R3, for n
≥ 0 steps, we get the following derivation,

(S1, S2, S3) r



Next applying the sixth rule of R1, we get the following

Since, the query symbol Q2 is present in the first component, we
perform a communication step by sending (bn+2S2) present in the
second component to the first component replacing (Q2) and we
obtain the following,

After using the seventh rule of R1, followed by the communication
step for Q3 and finally apply the terminating rule for S3 in R1, we
get the following derivation steps

Hence, all string-graphs (an bn cn), n ≥ 4 can be produced in this
way.

The following corollary is interesting because of the Fact 2.3.7

Mapana J Sci, 10, 2(2011) Parallel Communicating String-Graph P System

73

Corollary 3.1

The string graph language L = {(anbncn) / n  1} can be generated by
a string-graph P system using hypergraphs of order 2.

Remarks

This corollary is significant in implementation as it requires only
hypergraphs of order two, in contrast with Fact 2.3.7

Conclusion

In this paper, we have defined string-graph P System and obtained
its generative power. In future, we study further the other
properties of this system.

References

[1] J. Dassow and B. Truthe, "On the number of components for
some parallel communicating grammar systems." Theoretical
Computer Science, vol. 387 pp 136-146, 2007.

[2] J. Dassow, G. Paun and G. Rosenberg. “Grammar systems.”
Handbook of formal languages, Springer, pp 155-213, 1997.

[3] G. Paun and G. Rozenberg. “A Guide to membrane
computing.” Theoretical Computer Science, vol. 287, pp. 73-100, 2002.

[4] A. Habel. “Hyperedge replacement: Grammars and
Languages.” Lecture notes in Computer Science, vol. 643, Springer-
Verlag, New York.

