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Abstract  

The concept of parallel communicating grammar systems 
generating string languages is extended to string-graph P 
systems and their generative power is studied. It is also 
established that for every language L generated by a 
parallel communicating grammar system there exists an 
equivalent parallel communicating string-graph P system 
generating the string-graph language corresponding to L.  

Keywords: String Grammar, PC Grammar System, Membrane 
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1. Introduction 

Membrane computing is an area of computer science aiming to 
abstract computing ideas and models from the structure and the 
functioning of living cells, as well as from the way the cells are 
organized in tissues or higher order structures, also known as P 
System. 

The membrane structure of a P system is a hierarchical 
arrangement of membranes, embedded in a skin membrane - the 
one which separates the system from its environment.  A 
membrane without any membrane inside is called elementary. 
Each membrane defines a region. A membrane structure is 
pictorially represented by an Euler-Venn diagram or it can be 
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mathematically represented by a tree, or by a corresponding string 
of matching parenthesis.  

Each region consists of a multiset of objects and a set of evolution 
rules.  The objects are represented by symbols from a given 
alphabet.  An evolution rule from region r is in general of the form

in out herejca cb d d , and it says that a copy of the object a, in the 

presence of a copy of the catalyst c (this is an object which is never 
modified, it only assists the evolution of other objects), is replaced 
by a copy of the object b and two copies of the object d. Moreover, 
the copy of b has to immediately enter the inner membrane of 
region r labeled by j (hence to enter region j), a copy of object d is 
sent out through the membrane of region r, and a copy of d remains 
in region r. 

In natural languages, there occur phenomena like multiple 
agreements, crossed agreements and replication. These aspects are 
represented in formal language theory by the three languages K1 = 
{anbncn / n ≥ 1}, K2 = {anbmcndm / m, n ≥ 1} and K3 = {ww / w  {a, b}+} 
respectively.   It is known that these languages can be generated by 
grammar systems with regular grammar components.  

A grammar system is a set of grammars working together, 
according to a specified protocol, to generate one language. There 
are two basic classes of grammar systems: sequential and parallel. 

A cooperating distributed (CD) grammar system is a sequential 
grammar system, in which all component grammars have a 
common sentential form. Whereas, a parallel communicating (PC) 
grammar system is parallel in nature and, each component has its 
own sentential form. Within each time unit each component 
applies a rule, rewriting its own sentential form. The key feature of 
a PC grammar system is its ‘communications through queries’ 
mechanism.  Special (query) symbols are provided with each 
system pointing to a component of the system.   When a 
component i introduces the query symbol Qj, the current sentential 
form of the component j will be sent to the component i, replacing 
all the occurrences of Qj. The grammar j resumes rewriting 
beginning again from its axiom. 
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On the other hand, string-graphs (or linear graphs or labeled paths) 
represent strings over an alphabet and hyper-graph grammars 
generating string-graph languages are well studied in the literature 
[4].  In this paper, we define string-graph P system as an outcome 
of string-graphs, PC grammar system and P system and provide 
some results.  

2. Basic Concepts 

In this section, we review the concepts of grammar systems, 
membrane systems, and string graph grammars. 

2.1 Grammar System 

In this section, we recall the concepts related to PC grammar 
system [1, 2].  

Definition 2.1.1 A PC grammar system of degree n  1, is an (n+3) 
tuple = (N, K, T, (S1, P1), (S2, P2), …, (Sn , Pn)), where N is a non 
terminal  alphabet, T is a terminal alphabet, K = {Q1, Q2, …, Qn} (the 
sets N, K, T are mutually disjoint), Pi is a finite set of rewriting rules 
over  VΓ =  N  K  T and Si  N, for all 1  i  n. 

The sets Pi , 1  i  n, are called the components of the system, and 
the elements Q1, Q2, …, Qn of K are called query symbols; the index 
i of Qi points to the ith component Pi of  . 

Given a PC grammar system  = (N, K, T, (S1, P1), (S2, P2), …,(Sn, 
Pn)), for two n-tuples (x1, x2, …, xn), (y1, y2 ,..., yn), with xi, yi  V*, 1 
 i   n, where x1  T*, we write (x1, x2, …, xn)  (y1, y2, ..., yn), if one 
of the following cases holds: 

(i) For each i, 1  i  n, xik = 0, 1  i  n, and for each i, 1  i  n, we 
have either xi  yi  by a rule in Pi, or xi  yi  T*. 

(ii) There is i, 1  i  n such that xi k  0. Let for each i, 
1 2 11 2 ...i i i t i ttx z Q z Q z Q z  , t  1, for zj  (NT)*, 1  i  t+1.   If 

| | 0i kjx  , for all j, 1  j  t, then 1 2 11 2 ...i i i t i tty z x z x z x z   and 
i ij jy S , 1  j  t.  If for some j, 1  j  t, | | 0i kjx  , then yi = xi.  

For all i, 1  i  n, such that yi  is not specified above, we have yi = 
xi. 

A PC grammar system deadlocks in two cases: 
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(1)  when no query symbol is present, a component xi of the 
current configuration (x1, x2, …, xn) is not a terminal string and no 
rule of pi can be applied to it. (This can happen both after a 
rewriting and after a communication), and  

(2)  when a circular query appears: 1iP introduces 2iQ , 2iP

introduces 3iQ , and so on until 
1kiP


 introduces ikQ , and ikP  

introduces  1iQ  no derivation is possible (the communication has 
priority), but no communication is possible (only strings without 
occurrences of query symbols are communicated). 

Definition 2.1.2 The language generated by a PC grammar system 
 is L() = {x  T* / (S1, S2, …, Sn) * (x, 2, …, n), i  V*, 2  i  
n}. 

Let  = (N, K, T, (S1, P1), (S2, P2), …, (Sn, Pn)) be a PC grammar system.  If 
only P1 is allowed to introduce query symbols (formally, Pi  (NT)*  
(NT)* for 2  i  n), then we say that  is a centralized PC grammar 
system, otherwise  is non-centralized, 

A PC grammar system is said to be returning (to axiom) if, after 
communicating, each component which has sent its string to 
another component returns to axiom. 

A PC grammar system is non-returning if after communicating, the 
component does not return to its axiom, but rather it continues to 
process the current string. 

A PC grammar system is said to be regular, linear, context-free, 
context-sensitive, -free, etc. when the rules in its components are 
of the corresponding types. 

2.2 Membrane System 

In this section, we review the notions of P system and Rewriting P 
system [3]. 

Definition 2.2.1  A membrane system called a P system is a 
construct  = (V, T, C, , w1, w2, …, wm, (R1,1), …, (Rm,m)), where V 
is an alphabet –its elements are called objects; T  V  (the output 
alphabet); C  V – T (catalysts);  is a membrane structure 
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consisting of  m membranes injectively labeled by the elements of a 
given  region of m labels; m is called the degree of ; wi, 1  i  m, 
are strings which represents multisets over V associated with the 
regions 1, 2, …, m of . 

An evolution rule is a pair (u, v) written as u  v, where u is a 
string over V and v = v or v = v, where v is a string over 
{ , , / ,1 }

jhere out ina a a a V j m   , and  is a special symbol not in 

V.  The length of u is called the radius of the rule u  v. Ri, 1  j  
m, are finite sets of evolution rules over V each Ri is associated with 
the region i of ; i is a partial order relation over Ri, called a 
priority relation. 

Definition 2.2.2  A rewriting P system of degree n ≥ 1 is a construct  
  = (V, µ, M1, …, Mn, (R1,ρ1) ,…, (Rn,ρn), i0), where V is an alphabet, 
µ is a membrane structure consisting of n membranes (labeled with 
1, 2, …, n),  Mi, ni 1  are finite languages over V, Ri, ni 1 , are 
finite sets of context free evolution rules.  The rules of the form X  
v(tar), where X is a symbol of V and v = v or v = v, or v = vτ , where 
v is a string over V and δ, τ are symbols not in V.   tar{here, out} 
  {inm| nm 1 }, represents the target membrane, (i.e.) the 
membrane where the string produced with this rule will go.  ρi, 

ni 1 , are partial order relations over Ri representing priorities 
among rules , i0 is the output membrane.   

The membrane structure  and the finite languages M1, …, Mn 
constitute the initial configuration of the system.  Membranes can 
have two different thickness levels.  We can pass from one 
configuration to another by applying in parallel the evolution rules 
to all strings which can be rewritten, obeying the priority relations.  
The set of strings generated are collected in a designated 
membrane, the output one, and hence the language generated by  
.  

2.3 String Graph Grammar 

 In this section, we provide the necessary definitions related 
to the study of string graph grammar.  For the unexplained 
notions, we refer to [4]. 
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Definition 2.3.1  Let C be an arbitrary, but fixed set, called set of 
labels (or colors).  A (directed hyperedge-labeled) hypergraph over 
C is a system (V, E, s, t, l ) where V is a finite set of nodes (or 
vertices), E is a finite set of hyperedges andVEs *:  *: VEt 
are two mappings assigning  a sequence of sources s(e) and a 
sequence of targets t(e) to each e   E, and l : E C is a mapping 
labeling each hyperedge. 

For eE, the set of nodes occurring in the sequence att(e) = s(e).t(e) 
is called the set of attachment nodes of e and is denoted by att(e). 

A hyperedge eE is called an (m, n) – edge for some m,nN if 
｜s(e)｜= m and |t(e)｜= n. The pair (m, n) is the type of e, denoted 
by type(e).  

Definition 2.3.2  A multi-pointed hypergraph over C is a system H 
= (V, E, s, t, l, begin, end) where (V, E, s, t, l ) is a hypergraph over C 
and begin, end V*, components of H are denoted by VH, EH, sH, tH, 
lH, beginH, endH, respectively. The set of all multi-pointed 
hypergraphs over C is denoted by HC. 

For H  HC, the set of nodes occurring in the sequence extH = 
beginH. endH is called the set of external nodes of H and is denoted 
by EXTH. 

H  HC is said to be an (m, n) – hypergraph for some m, n  N if  
beginH= m and endH = n.  The pair (m, n) is the type of H, denoted 
by type(H). 

An (m, n) hypergraph H over C is said to be an (m, n) graph if VH  
 1 and all hyperedges of H are (1, 1) edges. The set of all (1, 1) 
graphs over C is denoted by GC. 

Definition 2.3.3  H  HC   is said to be a singleton if VH = EXTH and 
|EH|= 1.  In this case, e(H) refers to the single hyperedge of H and 
l(H) to its label. 

A singleton H with EH = {e}, sH(e) = beginH, and tH(e) = endH is said to 
be a handle.  If lH(e) = A, type(e) = (m, n) for some m ,nN, and the 
nodes in extH = beginH.endH are pairwise distinct, then H is said to be 
an (m,n) – handle induced by A and is denoted by  
(A, (m, n))•  or A(m, n)• 
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Definition 2.3.4  A (1, 1) hypergraph H over C is called a string 
graph if  it is of the form H = ({v0, v1, …, vn}, {e1, …, en}, s, t, l, (v0, vn)) 
where v0, v1,…, vn are pair wise distinct, s(ei) = vi–1, and t(ei) = vi for  i 
= 1, 2, …, n.  If w = l(e1), …, l(en), then the (1, 1) hypergraph is called 
string graph induced by w and  it is denoted by w*. 

A string graph of the form   

            a1               a2             a3                             an  

 

provides a unique graph representation of the string a1 a2 … an  
C+.  

Definition 2.3.5 A hypergraph language L is said to be a string-
graph language if all H L are string graphs. The class of all string-
graph languages is denoted by L string. 

Definition 2.3.6  A hyperedge replacement grammar HRG = (N, T, 
P, Z) is said to be context–free string–graph grammar if the right 
hand sides of the productions in P as well as the axiom Z are string 
graphs. The class of all string-graph languages generated by a 
context-free string–graph grammar is denoted by CFL. 

Fact 2.3.7 [4] 

 The string graph language L = {(anbncn) / n  1} cannot be 
generated by a hypergraph grammar of order < 4. 

3.  String-graph P system 

In this section, we extend the concept of parallel communicating 
grammar system generating string languages to string-graph P 
system and study its generative power. 

Definition 3.1  A string-graph P system is a construct   = 
(N, K, T, , w1, w2,…, wm, R1, R2,…, Rm) where N is a set of 
nonterminals; T is a set of terminals, distinct from N; K = {Q1, Q2, 
…, Qn}, is a distinct subset of N, called the set of query symbols;  is 
a membrane structure consisting of m membranes injectively 
labeled by the elements of a given region of m labels; wi is a string-
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graph associated with the region i, 1  i  m of ;  Ri are the string-
graph rewriting rules associated with the region i, 1  i  m of  . 

Theorem 3.1 For every language L generated by a PC grammar 
system there exists an equivalent parallel communicating string-
graph P system generating the string-graph language 
corresponding to L. 

Proof  Consider a PC grammar system Γ = (N, K, T, (S1, P1), (S2, 
P2),…, (Sn, Pn)) with degree n 1,  generating a language L. We give 
below the method of constructing an equivalent parallel 
communicating string-graph P system generating the string-graph 
language L● . 

The required PC string-graph P system is ∏ = (N, K, T, µ, w1, w2, 

…,wn, R1, R2, …,R n), where N, T, K are same as in Γ, µ is the membrane 
structure of the regions 1, 2, …, n: [1[2]2[3]3…]1. wi = (Si)●, the initial 
string-graph present in the region i and Ri contains the string-graph 
rewriting rules corresponding to the string rules of Pi in Γ for i = 1, 
2, …, n. 

Initially, the derivation starts with the axiom Si, in the region i, and 
continuing the derivation with rules of Ri, for each i = 1, 2, …, n. 
Only the skin membrane produces the query symbols using the 
rules in R1. When the skin membrane produces the query symbol 
Qi, for some i, it performs the communication step of replacing the 
query symbol Qi by the communicated string which is derived in 
region i. 

After performing a sequence of steps, and if there is no query 
symbol present in the skin membrane the corresponding string-
graph is sent out of the membrane and collected in the language. 

It can be easily seen that corresponding to a successful derivation 
in Γ, there exists a corresponding successful derivation in the 
string-graph P system ∏.  

Example 3.1 illustrates the Theorem 3.1. 

Example 3.1 

Consider the string-graph P system П = (N, K, T, µ, w1, w2, w3, R1, 
R2, R3), where N = {S1, S1′, S2, S3, Q2, Q3}, T = {a, b, c}, µ = [1 [2]2 [3]3 ]1,  
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K = {Q2, Q3} is the set of query symbols, w1, w2, w3 are the initial 
string-graphs present in regions 1, 2 and 3 respectively and the 
string-graph rewriting rules R1, R2, R3 are defined as follows:  

 

R1= {S1::=begin                                            end , 

 

          S1 ::=begin                                                                     end , 

 

S1 ::=begin                                              end , 

 

       S1::=begin                                                                  end , 

        

S1'::= begin   end , 

 

       S1'::=  begin  end , 

 

      S2 ::=   begin       end , 

 

      S3 ::= begin  end } 

 

R2 =  S2 ::= {begin     end} 

 

R3 =  S3 ::=  { begin    end } 
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 First, we start with (S1, S2, S3). Applying the third rule of R1 
first and then the fifth rule in R1and the unique rules in R2, R3, for n 
≥ 0 steps, we get the following derivation, 

(S1, S2, S3) r  

 
  

 
Next applying the sixth rule of R1, we get the following  

                                       

Since, the query symbol Q2 is present in the first component, we 
perform a communication step by sending (bn+2S2) present in the 
second component to the first component replacing (Q2)  and we 
obtain the following,  

                                   

 

After using the seventh rule of R1, followed by the communication 
step for Q3 and finally apply the terminating rule for S3 in R1, we 
get the following derivation steps 

 

Hence, all string-graphs (an bn cn), n ≥ 4 can be produced in this 
way. 

The following corollary is interesting because of the Fact 2.3.7     
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Corollary 3.1 

The string graph language L = {(anbncn) / n  1} can be generated by 
a string-graph P system using hypergraphs of order 2. 

Remarks 

This corollary is significant in implementation as it requires only 
hypergraphs of order two, in contrast with Fact 2.3.7 

Conclusion 

In this paper, we have defined string-graph P System and obtained 
its generative power. In future, we study further the other 
properties of this system. 
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