

MJS, Vol.1, No. 2, Dec. 2002 - April 2003 pp.15-21 https://doi.org/10.12725/mjs.2.4

Application of Ruscheweyh Derivative Operator on Meromorphic Functions in the Unit Disk

K.S. Padmanabhan* and Rajalakshmi Rajagopal†

Abstract

Keywords and Phrases: Ruschweyh derivative, Differential inequalities, Hadamard product.‡

In this paper we introduce a certain convolution operator $D^{\alpha+p-1}$ on meromorphic functions of the form

$$f(z) = \frac{1}{z^p} + \sum a_n z^n \text{ in } 0 < |z| < 1$$

and deal with the application of the above operator to certain differential inequalities involving $D^{\alpha+p-1}f$.

Introduction

In a recent paper¹ Lin Jinlin has introduced a differential operator defined by Convolution on functions of the form

$$f(z) = z^p + a_{p+1}z^{p+1} + \dots$$
 (p a positive integer)

Director (Retired), Ramanujan Institute for Advanced Study of Mathematics, University of Madras, India.

[†] Department of Mathematics, Loyola College, Chennai-600 034, India.

analytic in |z| < 1 and, studied and obtained differential inequalities. In this paper we introduce a similar operator on functions $f \in M(p)$ where M(p), p a positive integer denotes the class of meromorphic functions f of the form

$$f(z) = \frac{1}{z^p} + \frac{b_1}{z^{p-1}} + \dots + \frac{b_{p-1}}{z} + \sum_{n=0}^{\infty} a_n z^n$$

which are analytic in the punctured disc $E_0 = \{z : 0 < |z| < 1\}$. We denote f * g the convolution (or Hadamard product of f, $g \in M(p)$) defined as follows. Let

$$f(z) = \frac{1}{z^p} + \frac{b_1}{z^{p-1}} + \frac{b_2}{z^{p-2}} \dots + \frac{b_{p-1}}{z} + \sum_{n=0}^{\infty} a_n z^n$$

$$g(z) = \frac{1}{z^{p}} + \frac{c_{1}}{z^{p-1}} + \frac{c_{2}}{z^{p-2}} \dots + \frac{c_{p-1}}{z} + \sum_{n=0}^{\infty} d_{n} z^{n}$$

then

$$(f * g)(z) = \frac{1}{z^{p}} + \sum_{n=1}^{p-1} \frac{b_{n}c_{n}}{z^{p-n}} + \sum_{n=0}^{\infty} a_{n}d_{n}z^{n}$$

Using the above convolution, we define the operator $D^{\alpha+p-1}$ on f by

$$D^{\alpha+p-1}f(z) = \frac{1}{z^{p}(1-z)^{\alpha+p}} * f(z)$$

where $f(z) \in M(p)$ and α is any real number > -p .

For $\alpha = -(p-1)$, we get

$$D^{0}f(z) = \frac{1}{z^{p}(1-z)} * f(z) = f(z)$$

so that $\,{\it D}^{\,0}\,$ acts as the identity operator on $\,f\,$.

We can easily prove that

$$D^{\alpha+p-1}f(z) = \frac{1}{z^p} \frac{(z^{\alpha+2p-1}f(z))^{(\alpha+p-1)}}{(\alpha+p-1)!}$$

If α is an integer not less than -p+1. Therefore

$$D^{\alpha+p-1}f(z) = \frac{1}{z^{p}(1-z)^{\alpha+p}} * f(z)$$
$$= \frac{1}{z^{p}} \frac{(z^{\alpha+2p-1}f(z))^{(\alpha+p-1)}}{(\alpha+p-1)!}$$

We propose to study the application of this Convolution operator to certain differential inequalities.

Now we need the following.

whenever

Definition [1]

iii)

Let $H(\alpha)$ be the set of complex valued functions; h(r,s,t); h(r,s,t); $C^3 \to C$ (C is the complex plane) such that

i)
$$h(r, s, t)$$
 is continuous in a domain $D \subset C^3$;

$$|h(1,1,1)| < D$$
 and
$$|h(1,1,1)| < J(J>1) ;$$

iii)
$$\left| h \left(Je^{i\theta}, \frac{(1+m) + (\alpha+p)Je^{i\theta}}{\alpha+p+1}, \frac{1}{\alpha+p+2} \times \left[2 + m + (\alpha+p)Je^{i\theta} + \frac{m-m^2 + (\alpha+p)mJe^{i\theta} + L}{1+m + (\alpha+p)Je^{i\theta}} \right] \right) \right| > J$$

$$\left(Je^{i\theta},\frac{(1+m)+(\alpha+p)Je^{i\theta}}{\alpha+p+1},\frac{1}{\alpha+p+2}\times\right.$$

$$\left[2+m+(\alpha+p)Je^{i\theta}+\frac{m-m^2+(\alpha+p)mJe^{i\theta}+L}{1+m+(\alpha+p)Je^{i\theta}}\right] \in D$$

with Re \leq m (m-1) for real θ and for real $m \geq \frac{J-1}{J+1}$.

Main Result

First we state the following lemma due to Miller and Mocanu², which we use in the sequel.

Lemma

Let $W(z) = a + W_k z^k + ...$ be regular in the unit disc E with $W(z) \equiv a$ and $k \ge 1$.

If
$$z_0 = r_0 e^{i\theta} (0 < r_0 < 1)$$
 and $|W(z_0)| = \max_{|z| \le r_0} |W(z)|$, then

i)
$$z_0 \frac{W'(z_0)}{W(z_0)} = m \text{ and }$$

ii)
$$\operatorname{Re}\left(z_0 \frac{W''(z_0)}{W'(z_0)}\right) \ge m - 1$$

where m is real and

$$m \ge k \frac{|W(z_0) - a|^2}{|W(z_0)|^2 - |a|^2} \ge k \frac{|W(z_0)| - |a|}{|W(z_0)| + |a|}$$

Applying the above lemma $D^{\alpha+p-1}f$ where $f \in M(p)$ we prove the following.

Theorem

Let
$$h(r,s,t) \in H(\alpha)$$
 and let $f(z) \in M(P)$ satisfy

i)
$$\left(\frac{D^{\alpha+p}f(z)}{D^{\alpha+p-1}f(z)}, \frac{D^{\alpha+p+1}f(z)}{D^{\alpha+p}f(z)}, \frac{D^{\alpha+p+2}f(z)}{D^{\alpha+p+1}f(z)}\right) \in D \subset C^3 \text{ and }$$

$$|h\left(\frac{D^{\alpha+p}f(z)}{D^{\alpha+p-1}f(z)}, \frac{D^{\alpha+p+1}f(z)}{D^{\alpha+p}f(z)}, \frac{D^{\alpha+p+2}f(z)}{D^{\alpha+p+1}f(z)}\right)| < J$$

for some α and J such that $\alpha \ge -p+1$, J>1 for all $z \in E_0$. Then we have

$$\left| \frac{D^{\alpha+p} f(z)}{D^{\alpha+p-1} f(z)} \right| < J, \quad z \in E_0$$

Proof

We define the function $\omega(z)$ in E_0 by

$$\frac{D^{\alpha+p}f(z)}{D^{\alpha+p-1}f(z)} = \omega(z) \quad (\alpha \ge -p+1)$$

for $f(z)\!\in\!M(p)$. Then it follows that $\omega(z)$ is either analytic or meromorphic in

 E_0 and $\omega(0)$ = 1 and $\omega(z)$ \equiv 1 . With the aid of the following easily proved identity

$$z(D^{\alpha+p-1}f(z))' = (\alpha+p)D^{\alpha+p}f(z) - (\alpha+2p)D^{\alpha+p-1}f(z)$$

We compute

$$\frac{D^{\alpha+p+1}f(z)}{D^{a+p}f(z)} = \frac{1}{(\alpha+p+1)} \left[1 + (\alpha+p)\omega(z) + z \frac{\omega'(z)}{\omega(z)} \right] \quad and$$

$$\frac{D^{\alpha+p+2}f(z)}{D^{\alpha+p+1}f(z)} = \frac{1}{(\alpha+p+2)} \left[2 + (\alpha+p)\omega(z) + z\frac{\omega'(z)}{\omega(z)} + (\alpha+p)z\omega'(z) + [z\omega'(z)/\omega(z)] + \frac{z^2\omega''(z)/\omega(z) - (z\omega'(z)/\omega(z))^2}{1 + (\alpha+p)\omega(z) + z\omega'(z)/\omega(z)} \right]$$

Suppose, if possible, that $z_0 = r_0 e^{i\theta}$ (0 < r_0 < 1) and $|\omega(z_0)| = \max_{|z| \le r_0} |\omega(z)| = J$.

Letting $\omega(z_0) = Je^{i\theta}$ and using the lemma with a = 1 and k = 1 we get

$$\frac{D^{\alpha+p+1}f(z_0)}{D^{a+p}f(z_0)} = \frac{1}{(\alpha+p+1)} [1+m+(\alpha+p)mJe^{i\theta}]$$

$$\frac{D^{\alpha+p+2}f(z_0)}{D^{a+p+1}f(z_0)} = \frac{1}{(\alpha+p+2)} \times \left[2+m+(\alpha+p)mJe^{i\theta} + \frac{m-m^2+(\alpha+p)mJe^{i\theta}+L}{1+m+(\alpha+p)Je^{i\theta}} \right]$$

Where $L=z_0\omega''(z_0)/\omega(z_0)$ and $m\geq (J-1)/(J+1)$. Further, an application of (ii) in the lemma gives $\mathrm{Re}\ L\geq m(m-1)$. Since $h(r,s,t)\in H(\alpha)$, we have

$$\left| h \left(\frac{D^{\alpha+p} f(z_0)}{D^{\alpha+p-1} f(z_0)}, \frac{D^{\alpha+p+1} f(z_0)}{D^{\alpha+p} f(z_0)}, \frac{D^{\alpha+p+2} f(z_0)}{D^{\alpha+p+1} f(z_0)} \right) \right| =$$

$$\frac{(2+m+(\alpha+p)Je^{i\theta}+m-m^2+(\alpha+P)mJe^{i\theta}+L)}{(\alpha+p+2)(1+m+(\alpha+p)Je^{i\theta}}$$

Which contradicts hypothesis (ii) of the theorem. Therefore we conclude that

$$\omega(z) = \left| \frac{D^{a+p} f(z)}{D^{a+p-1} f(z)} \right| < J \text{ for all } z \in E_0$$

This proves the theorem.

References

- A.M.S. Subject Classification (2000) Primary: 30C 45, secondary 34C 40.
- 1. Lin Jinlin, Note on the Ruscheweyh Derivatives, J. Math. Anal. Appl., 199, (1996) 936-940.
- Miller, S.S. and Mocanu, P.T., Second order differential inequalities in the complex plan, J. Math. Anal., 65, (1978) 289-305.