Role of Defects in the Band Gap Tailoring of Carbon Black


  • Elma Elizaba Mathew CHRIST (Deemed to be University), Bangalore.
  • Manoj Balachandran CHRIST (Deemed to be University), Bangalore.


Carbon Black, Band-Gap, Defects, Amorphous


With the rise in the need for cost-effective production of graphene-like systems, Carbon Black (CB) is found to be a potential candidate. This report presents the structural modification of Carbon Black (CB) subjected to hydrothermal exfoliation at various temperatures. X-ray diffraction (XRD) revealed the graphitic structure with a broad peak, indicating the amorphous nature regardless of the variation in temperatures. Raman spectroscopy revealed that defect intensity increased with the increase in temperature. The band-gaps are found to be 4eV, 2.95eV, 2.86eV and 2.21eV at the exfoliation temperatures 160⁰C,180⁰C,200⁰C and 220⁰C respectively exhibiting a lowering with rise in temperature.   

Author Biographies

Elma Elizaba Mathew, CHRIST (Deemed to be University), Bangalore.

Department of Physics & Electronics, CHRIST (Deemed to be University), Bangalore, Karnataka, India.

Manoj Balachandran, CHRIST (Deemed to be University), Bangalore.

Department of Physics & Electronics, CHRIST (Deemed to be University), Bangalore, Karnataka, India.


Lee, S. M., Lee, S. H., & Roh, J. S. (2021). Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis. Crystals, 11(2), 153., doi: 10.3390/cryst11020153.

Farida, E., Bukit, N., Ginting, E. M., & Bukit, B. F. (2019). The effect of carbon black composition in natural rubber compound. Case Studies in Thermal Engineering, 16, 100566., doi: 10.1016/j.csite.2019.100566.

Zhang, S., Cui, Y., Wu, B., Song, R., Song, H., Zhou, J., ... & Cao, L. (2014). Control of graphitization degree and defects of carbon blacks through ball-milling. RSC advances, 4(1), 505-509., doi: 10.1039/c3ra44530e.

M. C. F. Soares et al., “Surface modification of carbon black nanoparticles by dodecylamine: Thermal stability and phase transfer in brine medium,” Carbon N Y, vol. 72, pp. 287–295, Jun. 2014, doi: 10.1016/j.carbon.2014.02.008.

“Ungar, T., Gubicza, J., Ribarik, G., Pantea, C., & Zerda, T. W. (2002). Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon, 40(6), 929-937.

Daud, W. M. A. W., & Houshamnd, A. H. (2010). Textural characteristics, surface chemistry and oxidation of activated carbon. Journal of Natural Gas Chemistry, 19(3), 267-279. doi: 10.1016/S1003-9953(09)60066-9.

Hauptman, N., Vesel, A., Ivanovski, V., & Gunde, M. K. (2012). Electrical conductivity of carbon black pigments. Dyes and Pigments, 95(1), 1-7, doi: 10.1016/j.dyepig.2012.03.012.

Amornwachirabodee, K., Tantimekin, N., Pan-In, P., Palaga, T., Pienpinijtham, P., Pipattanaboon, C., ... & Wanichwecharungruang, S. (2018). Oxidized carbon black: preparation, characterization and application in antibody delivery across cell membrane. Scientific reports, 8(1), 1-11. doi: 10.1038/s41598-018-20650-4.

Hunt, A., Kurmaev, E. Z., & Moewes, A. (2014). Band gap engineering of graphene oxide by chemical modification. Carbon, 75, 366-371. doi: 10.1016/j.carbon.2014.04.015.

Acik, M., & Chabal, Y. J. (2012). A review on reducing graphene oxide for band gap engineering. J. Mater. Sci. Res, 2(1), 5539., doi: 10.5539/jmsr.v2n1p101.

Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., ... & Ajayan, P. M. (2012). Controlled, stepwise reduction and band gap manipulation of graphene oxide. The journal of physical chemistry letters, 3(8), 986-991., doi: 10.1021/jz300096t.

Mathew, E. E., & Balachandran, M. (2021). Crumpled and porous graphene for supercapacitor applications: A short review. Carbon Letters, 31(4), 537-555. doi: 10.1007/s42823-021-00229-2.

Manoj, B (2014). Characterization of nano-crystalline carbon from camphor and diesel by x-ray diffraction technique. Asian Journal of Chemistry, 26 (15), 4553.

Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.

Guo, J., Lou, H., Zhao, H., Wang, X., & Zheng, X. (2004). Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Materials Letters, 58(12-13), 1920-1923. doi: 10.1016/j.matlet.2003.12.013.

Manoj, B.(2012). Chemical demineralization of high volatile Indian bituminous coal by carboxylic acid and characterization of the products by SEM/EDS. Journal of environmental research and development, 6 (3A), 654-58

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., ... & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical review letters, 97(18), 187401. doi: 10.1103/PhysRevLett.97.187401.

Mathew, E. E., & Manoj, B. (2021). Disorders in graphene: types, effects and control techniques—a review. Carbon Letters, 1-20. doi: 10.1007/s42823-021-00289-4.

Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742., doi: 10.1016/j.carbon.2005.02.018.

“Schaeffer, W. D., Smith, W. R., & Polley, M. H. (1953). Structure and properties of carbon black-changes induced by heat treatment. Industrial & Engineering Chemistry, 45(8), 1721-1725.”.

“Jawhari, T., Roid, A., & Casado, J. (1995). Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 33(11), 1561-1565.”.