

Impact of Macroeconomic Variables on Stock Market Indices Value: A Cross-Country Indices Study

Rohini Mariappan*, Nikita Hari† and Amalendu Jyotishi‡

Abstract

Complete unpredictability and the contagion effect of stock markets could pose significant challenges for the entire financial markets of the world. Moreover, it is an incontrovertible truth that the variations in stock market indices is an integral part of the dynamics of economic activity and can propel social moods and expectations. In fact, the stock market has predicted 10 out of the last 3 recessions. In this context, this paper examines the present scenario of the stock markets across the under-developed, developing and developed economies of the globe. With the aid of various literature and article reviews, the variables that affect the stock market movement are determined to be inflation, industrial production index, foreign institutional investments, exchange rates, bank rates, unemployment rate, credit rating of various countries and the country's current state of development. As the stock market follows a non linear trend, this paper employs an auto-regression model to arrive at the degree of influence of each variable on the stock market index change. Ultimately the paper aids the policy makers and the investors to focus on the most influencing factor to

^{*} Students of MBA-MS Program Amrita School of Business and University at Buffalo (State University of New York) (ASBUB), Kasavanahalli, Carmelaram P:O:, Off Sarjapur Road, Bangalore – 560 035; mrohini19@gmail.com.

[†] (ASBUB), nikigang@gmail.com.

[‡] Associate Professor (ASBUB), amalendu.jyotishi@gmail.com.

end in better stock picking decisions thereby leading to superior earning capability.

Keywords: Stock market indices, Financial markets, Autoregression model, Various economies

JEL Classification: G15, E44

Introduction

As the saving goes, the stock market is the barometer of business; the stock market indices reflect the economic status of many capital influences the investors' confidence, countries. It accumulation. international trading, industrial production, liquidity management and henceforth the entire economical development. Most likely, the investment opportunities and the performance of the financial markets in general are impelled by the macro-economic scenario across the globe. Ultimately, it is important to promptly arrive at a decision of which macroeconomic variable affects the stock market to a larger degree so as to get a deeper insight on stock picking decisions that aid the end investors, the normal people like us who are the driving forces of any economy.

The paper captures the world's best, moderate and the worst performing stock markets in terms of stock market indices change and the macro-economic variables (inflation, industrial production index, foreign institutional investments, exchange rates, bank rates, credit rating of various countries and the country's current state of development) that affect the stock market indices.

Review of Literature

The Indian stock market index is taken as a function of exchange rates against USD, Index of Industrial Production (IIP), and Wholesale Price Index (WPI) as according to Dharmendra (2009). Chen *et al.* (1986) is of the opinion that changes in stock returns are inclusive of the increase in the industrial production, variation in the risk premium and the yield curve, fluctuations in inflation rates, etc. In order to affirm on the relationship between stock market indices and the other factors, Dharmendra (2009) carried out unit root test and Granger causality test. This paper takes into account time series data. The results of the correlation matrix show that IIP and SENSEX have a strong correlation. Since causality and correlation are two different entities whose results are not the same; the causality tests show that only IIP influences the SENSEX and that the other two variables are not responsible for causing fluctuations in the stock market index.

Anthony Kyereboah-Coleman and Kwame F. Agyire-Tettey, (2008) in their journal on the movement of Ghana stock exchange indices with respect to various macro-economic variables indicate that the lending rates could primarily contribute to the performance of the stock market. The two models - Neo classical monetary growth model and Keynesian models put forth contradictory remarks on the interest rates' impact on the investment, income and savings thereafter. Rate of inflation, exchange rate, fiscal position, GDP, growth rate etc were other variables that could impact the stock market. The results showed that high lending rates had a negative impact on the business. Inflation also had its share of effect on the stock market indices but not too evident because the present inflation level hardly has an impact on the market. The only disadvantage to this paper was that the effect of macro-economic variables on the stock market index was studied only for one country.

Shiu-Sheng Chen(2003) in his journal on prediction of bear stock market identified the following variables to have an impact on the stock market index : interest rate spreads, inflation rates, aggregate output, unemployment rate, federal fund rates, federal government debts, nominal exchange rates. The aim of his paper was to help policy makers given the predictability of movement in the stock market indices thereby helping them to form market-timing strategies. The paper contributed to 2 types of approaches-parametric and non-parametric. Furthermore, a predictive regression model was made use of to test the hypothesis on the β value.

Tantatape and Komain (2007) through their study on the variations in the stock market indices of Thailand attributed to money supply, industrial production index, exchange rate and oil prices observed that the money supply had a positive impact on the stock market. This was proved through the Granger's causality test. Furthermore, the impact was seen to a greater extent in the pre-financial crisis than the post-financial crisis in Thailand.

According to Aima, Hira and Zaheer (2011), the increasing interest rates and exchange rates caused the returns to decline. Whereas inflation showed a positive impact on the stock market. The two major methodologies adopted was co-integration test and vector auto regression which was used to test the long term and short time relationship between the macroeconomic variables and its impact on the stock market indices.

David, Mark and Jesper (2005), in their study, included macroeconomic factors such as interest rates, industrial production, term spread and unemployment rate and money stock. The impact of these on the stock market was tested over 12 industrialised countries and was observed that the interest rates are strong predictors and better reliable to estimate the returns on stock.

Findings from Seyed, Zamri, Yew Wah (2011) show the relationship between the stock market indices and 4 major macroeconomic variables such as crude oil price, money market, inflation and industrial production in China and India. The effect of industrial production and inflation seems to be positive in India whereas the effect of crude oil prices and money supply is negative in India. Unit test and Multi-variate co-integration test were used to determine the relationship between the two variables.

According to T. Sampath (2011), the Auto- Regressive Distributed Lag (ARDL) approach was used to test co-integration. The effect of Wholesale Price Index (WPI), real effective rate and Index of Industrial Production (IIP) seemed to show stronger effect on the stock prices. Exchange rates and Inflation seemed to show a negative relationship to the stock prices.

The following were the possible variables that were obtained from the review of literature - IIP, Money supply, Exchange rate, Interest rate spreads, Inflation rates, Crude Oil Prices, Lending rates, Real effective exchange rate, Wholesale price index and Index of Industrial Production.

Econometric Model and Sample size estimation:

The econometric model used is linear in nature.

$$\begin{split} Y &= f \left(X1, X2, X3, X4, X5, X6, X7 \right) \\ \text{implies } Y &= \alpha + \beta 1 X1 + \beta 2 X2 + \beta 3 X3 + \beta 4 X4 + \beta 5 X5 + \beta 6 X6 \\ &+ \beta 7 X7 + \text{Ui} \end{split}$$

Where,

Y- Stock market index value change (2009-10)

X1- Interest Rate Spread

X2- Internet Users/100

X3- GDP growth (2009-10)

X4- Foreign Direct Investments

X5- Money Supply Growth

X6- Stock Turnover

X7- Real and Effective Exchange rate index

Out of the 214 countries, only 37 of them are listed in the world federation of exchanges and 44 are non-listed. The sample size consists of 24 countries that constitute a combination of developed and developing economies in the ratio 1:2 the data obtained consists of information over the year 2010. This constitutes about 65% of the population (i.e.) 24 out of 37 countries.

Methodology

A linear regression model was run on SPSS over the obtained data to check on the stability and the significance of the independent variables

Data

The data sources available in the IMF website, World Bank website, the websites of the various stock markets all over the world and various other journal articles serve as our database. This paper reflects a set of cross sectional data of the annual stock market indices change and the annual macro-economic variables across 24 countries.

Rohini Mariappa et al.

Of the possible variables listed through literature review, the following variables were considered: Interest Rate spread, FDI, GDP Growth, Money Supply Growth, and Real and Effective Exchange Rate index. Apart from these 5 variables were introduced 2 new variables: Internet Users and Stock Turnover.

							r	
Country Name	Index	Interest Spread	Internet Use	FDI	GDP	StockTu rnover	REER	Money
Australia	AORD	3.067	775.89	6.059	2.257	90.077	115.18	9.376
Bahrain		6.023	55	-1.808	4.5	1.539	89.45	10.509
Bulgaria	SOFIX	7.068	45.98	1.3609	0.4	2.754	121.05	6.303
Chile	IPSA, IGPA	3.004	45	6.3509	6.095	19.712	108.45	10.561
China	SSE	3.06	34.39	1.2511	10.4	164.372	118.66	18.948
Colombia	IGBC	5.72	36.5	3.3808	4.001	13.44	120.32	11.458
C. Republic	PX Index	4.806	68.64	4.9209	2.739	29.417	122.45	1.876
Hungary	BUX	2.669	65.16	3.9109	1.258	94.528	106.12	4.2
Israel	TA-100	2.93	65.39	-2.8009	4.846	66.66	115.39	-11.004
Japan	Nikkei 225	1.098	77.64	-5.9010	4.435	114.488	102.68	1.919
Malaysia	KLSE	2.521	56.3	-4.309	7.194	27.067	108.81	7.348
Mexico	IPC	4.074	31.05	6.6409	5.519	27.306	92.72	12.767
Netherlands	AEX Index	-0.597	90.71	-6.6010	1.69	98.372	99.02	4.028
N. Zealand	NZX 50	1.672	83.01	1.2808	1.9	34.724	94.94	8.359
Nigeria	NSXA	11.064	28.43	5.139	7.824	12.538	117.93	9.31
Pakistan	KSE 100	5.898	16.78	1.9709	4.144	36.181	103.39	15.053
Philippines	PSE Index	4.453	25	6.8208	7.632	22.552	126.8	10.897
Romania	BET-10	6.759	40.02	2.9609	0.948	5.428	104.19	6.817
Russia	RTS Index	4.808	43.31	-9.2009	4.3	85.714	125.93	24.59
Singapore	FTSE Group	5.174	71.14	1.8910	14.763	82.879	111.28	8.611
S. Africa	JSE	3.368	12.33	1.3909	2.89	39.599	101.23	6.934
Switzerland	Swiss Market	2.653	82.17	-4.4010	2.714	75.602	107.5	5.501
Ukraine	PFTS index	5.313	44.59	5.7609	4.1	7.477	99.07	22.691
Zambia		13.516	10.13	6.348	7.61	9.161	125.99	29.859

T_{Δ}	h	0.	1
Ia	U	le.	Т

Tests and Interpretations

Best Fit of the Line: The estimates of the model were obtained from the unstandardised beta co-efficient got through the linear regression model. The error terms were calculated by taking the difference between Y (dependent variable) actual and estimate. The sum of all the error terms obtained was zero. This shows that the model has a best fit line.

A Cross-Country Indices Study

The Chow test was also done to show structural stability in the model and hence the model proved <u>no structural break</u> in the model.

Stock market Indices- (S&P Global Country Name Equity % change) Estimate Error Indices v vu All Ordinaries. 12.49092 -3.35154 Australia 15.84245661 S&P/ASX 200 Bahrain 9.96791 11.49532 -1.52741197 Bulgaria SOFIX -15.1638 3.09932 -18.263168 Chile IPSA, IGPA 47.24033 43.48376 3.756569958 China SSE Composite 6.914683 8.520687 -1.60600381 Index Colombia IGBC, COL20. 44.05827 30.211 13.84727059 COLCAP Czech PX Index 0.20595 5.489962 -5.28401215 Republic Hungary BUX -10.7507 -10.9733 0.222675024 TA-100 Index (Tel Israel 7.362251 -0.2376 7.599847542 Aviv 100) Nikkei 225 Japan 9.614292 6.388457 3.225835603 Malaysia KLSE 35.06396 42.90104 -7.83708227 Mexico IPC Index 26.59595 31.34764 -4.75169543 Netherlands AEX Index 1.152789 9.977841 -8.82505216 New NZX 50 Index 5.230025 10.79224 -5.56221919 Zealand NSXA-B 20.29219 6.980786 13.31140105 Nigeria index (The All-Share Index)[6] Pakistan KSE 100 Index 15.32022 24.43258 -9.11235466 Philippines PSE Index 56.66901 55.65219 1.016823516 Romania BET-10 -6.58282 0.660122 -7.24293902 Russian RTS Index (RTSI) 21.67312 28.45272 -6.77959643 Federation Singapore FTSE 18.43888 27.08247 -8.64358557 Group indices South JSE 32.0867 28.49477 3.591929357 Africa Switzerland Swiss Market Index 11.03874 4.258032 6.780712541 Ukraine PFTS index 53.84306 32.49824 21.34481854 Zambia 17.38908 22.49429 -5.10520831

Table: 2

Rohini Mariappa *et al*.

Multicollinearity was used to check if there is any correlation between the independent variables. The factors checked are Tolerance and VIF. Both are inversely related and any VIF rating below 8 is considered to not have problems of multicollinearity.

It was also observed that all the *seven variables* were proved to be *statistically significant* with 90% confidence interval.

Model 1	Coefficients	Standard	t-Value	Sig.	VIF
		Error		-	
(constant)	3.323	27.888		0.119	
Interest Rate spread	-6.786	1.371	-1.056	-4.949	3.060
Internet Users	-0.366	0.155	-0.444	-2.359	2.381
GDP growth	3.627	0.858	0.616	4.228	1.424
Stock turnover	-0.331	0.083	-0.736	-3.987	2.29
Money supply	0.998	0.367	0.429	2.721	1.665
FDI	-1.643e-10	0.000	-0.285	-1.830	1.627
Exchange Rate	0.479	0.258	0.272	1.857	1.441

Table: 3

Heteroscadasticity : The distribution of the square of the error terms with respect to the y-estimates was found to show *no significant pattern* and hence the distribution was said to be homoscadastic in nature.

Fig:1

Country name	square	Y estimate
Australia	250.9834	-3.35154
Bahrain	2.332987	11.49532
Bulgaria	333.5433	3.09932
Chile	14.11182	43.48376
China	2.579248	8.520687
Colombia	191.7469	30.211
Czech Republic	27.92078	5.489962
Hungary	0.049584	-10.9733
Israel	57.75768	-0.2376
Japan	10.40602	6.388457
Malaysia	61.41986	42.90104
Mexico	22.57861	31.34764
Netherlands	77.88155	9.977841
New Zealand	30.93828	10.79224
Nigeria	177.1934	6.980786
Pakistan	83.03501	24.43258
Philippines	1.03393	55.65219
Romania	52.46017	0.660122
RussianFederation	45.96293	28.45272
Singapore	74.71157	27.08247
South Africa	12.90196	28.45272
Ukraine	455.6013	32.49824
Zambia	26.06315	22.49429

Table: 3

Auto-correlation - the correlation between the error terms were found not to exist. This was supported by the data on *Durbin Watson co-efficient* which was obtained as 1.976. Correlation between the independent variables were found to be *moderate* in nature (i.e.) between 0.4 and 0.6 majorly.

Table: 4	Tal	ble:	4
----------	-----	------	---

Coefficient Correlation						
Variables	REER	Stock	Money	GDP	FDI	Internet
		Turn-Over	Supply	Growth		Users
REER	1.000					
Stock turnover	-0.343	1.000				
Money Supply	0.144	-0.232	1.000			
GDP Growth	-0.021	-0.246	-0.050	1.000		
FDI	-0.043	-0.259	-0.045	-0.294	1.000	
Internet User	0.066	-0.312	0.328	0.005	0.370	1.000

Ranking

The ranking was done by calculating the technical efficiency which is the ratio of y-actual to y- frontier. The S&P rating assumes a different base year (1941-43) as compared to our ranking which is on the basis of just the values obtained during the year 2010.

The ones is yellow signify round about the same ranking whereas those highlighted in green show drastic difference in ranking.

Y*	Y/Y*			
	Technical	My Ranking		
Y Frontier	efficiency		S&P	
53.84272	1.000006	1	Ukraine	1
51.55548	0.85458	4	Chile	2
76.99667	0.735993	3	Philippines	3
64.82824	0.7287	2	Colombia	4
28.32527	0.716399	5	Nigeria	5
17.99294	0.694212	8	Malaysia	6
49.83925	0.643804	22	Romania	7
64.24552	0.545781	21	Czech Republic	8
52.69213	0.504742	24	Hungary	9
49.7972	0.435228	16	Pakistan	10
25.60251	0.431159	9	Mexico	11
43.83877	0.39666	10	Russian Federation	12
48.42695	0.380757	13	Singapore	13
21.10689	0.348808	7	South Africa	14
27.73294	0.346674	14	Israel	15
45.77706	0.33467	20	Netherland	16
32.8398	0.303531	11	Switzerland	17
29.86517	0.23153	17	Bahrain	18
32.13673	0.162743	19	New Zealand	19
31.32232	0.036804	6	Australia	20
26.83444	0.007675	23	Bulgaria	21
22.0046	-0.29916	15	Japan	22
24.4438	-0.62036	18	China	23
10.37115	-1.03659	12	Zambia	24

Table: 5

Findings and Recommendations

S1.	Findings	Recommendations
No	-	
1	High inverse variation between	Spread must keep varying according to
	interest rate spread and Stock	the economy (Lending rate to increase,
	market index (-1.1)	Deposit rate to decrease)
2	Internet users per 100, FDI are	Exchange traded regulations must be
	inversely related to the	tightened, FIIs are important for stocks
	dependent variable	trading \rightarrow Policy implications
3	Developing economies occupy	Contagion effect policies can be
	the first five positions	implemented in such developing
	_	countries
4	Ranking differences	S&P's base year is 1941-43 for stock
	-	market performance and the inclusive
		criteria is in higher limits

Summary of tests and Interpretations

Test	Significance of the test	Result	Interpretation	Is the model stable
Sum(Ui)	Best fit line	0	Best Fit (BLUE)	Yes
Chow test	Structural Stability	F=0.435	No structural Break	Yes
Histogram	Error termdistribution	Normal curve	Normally distributed Ui	Yes
Multi- collinearity	Correlation among Independent Variables	VIF< 10, No great fluctuation, Tolerance <1, Rsqr	Independent variables are not co	Yes
Heteroscadas ticity	Distribution of Uisqr	No pattern between Uisqr and Y estimate	Homoscadastic distribution	Yes
Auto-Co- relation	Correlation between error terms	Durbin Watson Co- efficient=1.976	Co-relation bet Ui, Uj=0	Yes
F-statistic	Sample regression prediciting Population	F=0.001 at 90% confidence	Adequate model	Yes
T-statistic	Ivs significance	All 7 Ivs' t<0.1 at 90%confidence, But insignifican	Significant Ivs	Yes
R sqr	Variation in all Ivs affecting DV	Rsqr= 0.762, Adjusted Rsqr= 0.657	Optimal Variations (No over/under)	Yes
Co-efficient Co-relation	Co-relation among Ivs	All values are moderate <= 0.6, >=- 0.4	Not highly Co-related	Yes

Rohini Mariappa et al.

Limitations of the study

- Stability in growth cannot be observed
- Non-linear pattern of stock market makes forecasting difficult

Scopes for improvement

- Ranking methodology can be improved
- Extension of model to panel data of the last decade

References

- Brahmasrene, T., & Jiranyakul, K. (2007). Co-integration and causality between stock index and macroeconomic variables in an emergin market. *Academy of Accounting and Financial Studies Journal*.
- Chen, N.F., Roll, R., Ross, A., & Stephen. (1986). Economic forces and the stock market. *Journal of Business*, 383-403.
- Chen, S. S. (2009). Predicting the bear stock market: Macroeconomic variables as leading l=indicators. *Journal of Banking and Finance*, 211-223.
- Hosseini M.S., Ahmad, Z., & Weh-Lai, Y. (2011). Role of macroeconomice variables on stock market index in China and India. *International Journal of Economics and Finance*.
- Khan, A., Ahmad, H., & Abbas, Z. (2011). Impact of macroeconomic factors on stock prices. *Interdisciplinary Journal of Contemporary Reserch in Business*, 3 (1).
- Kyereboah, C.A., & Agyire, T.K. F. (2008). Impact of the macroeconomic indicators on stock market performance: The case of the Ghana Stock Exchange. *The Journal of Risk Finance*, 365-378.
- Rapach E, D., Wohar E, M., & Rangvid, J. (2005). Macrovariables and international stock return predictability. *International Journal of Forecasting*, 137-166.
- T, S. (2011). Macroeconomic variables and stock prices in India : An emperical analysis. *The IUP Journal of Monetary Economics*.