Immobilization of Metal Sulfide Nanocrystals on Multiwalled Carbon Nanotubes Facilitated by Infrared Irradiation
Published 2021-08-27
Copyright (c) 2017
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Uniformly distributed metal sulfide nanocrystals are immobilized on the surface of oxygenated multiwalled carbon nanotubes (MWCNTs) by reacting metal ions (Cu 2+ / Zn 2+ /Cd 2+ ) anchored to MWCNTs with hydrogen sulfide while irradiating with infrared (IR) radiation. The IR irradiation is the key step in the effective immobilization of metal sulfide nanocrystals on MWCNTs. The photoabsorption and photothermal properties of MWCNTs in the presence of IR irradiation raises the temperature of the CNTs in solution, facilitating the interaction between the acidic groups on CNTs and the metal ions, which results in effective immobilization of the nanocrystals. The metal sulfide-MWCNT hybrids are characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy.