Vol. 17 No. 2 (2018): Mapana Journal of Sciences
Research Articles

Advanced Materials for Photovoltaic Energy Harvesting

Kezia Sasitharan
The University of Sheffield
Bio

Published 2021-08-16

Keywords

  • Energy crisis,
  • Photovoltaics,
  • Organic semiconductor,
  • Graphene,
  • Thin-film technology

Abstract

Design of novel materials is the key to ground breaking advancements in energy conversion. Solar radiation is a clean energy source with low environment impact but is still a difficult technology to be implemented on a large scale because of being an expensive technology. If global demands are to be met, new classes of solar cells with increased efficiency, reduced cost and new form factors must be developed. A lot of research is ongoing to find efficient materials which can supplement or supersede the existing silicon technology. In this review a general introduction covers the current scenario of energy demands of the world and where we stand in the search for alternative energy resources. A brief look into the working of photovoltaic systems and the conditions required to fabricate an ideal solar cell follows. Some of the advanced systems incorporated in solar cells over the past 20 years.

References

  1. G.Ã. Maggio, G. Cacciola, "A variant of the Hubbert curve for world oil production forecasts", Energy Policy,vol. 37, 4761–4770, 2009. doi:10.1016/j.enpol.2009.06.053.
  2. A. Goetzberger, C. Hebling, H. W. Schock, "Photovoltaic materials, history, status and outlook", Mater. Sci. Eng. R Reports,vol. 40,1–46,2003. doi:10.1016/S0927-796X(02)00092-X.
  3. V.V. Tyagi, N.A.A. Rahim, N.A. Rahim, J.A., L. Selvaraj, "Progress in solar PV technology: Research and achievement", Renew. Sustain. Energy Rev.,vol. 20, 443–461, 2013. doi:10.1016/j.rser.2012.09.028.
  4. G. Lu, S. Mao, S. Park, R.S. Ruoff, J. Chen, "Facile, Noncovalent Decoration of Graphene Oxide Sheets with Nanocrystals", 192–200, 2009. doi:10.1007/s12274-009-9017-8.
  5. A. Du, Y.H. Ng, N.J. Bell, Z. Zhu, R. Amal, S.C. Smith, "Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response", 894–899, 2011. doi:10.1021/jz2002698.
  6. Kezia Sasitharan Advanced Materials for Photovoltaic Energy Harvesting9
  7. P. V Kamat, "Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support", 520–527, 2010. doi:10.1021/jz900265j.
  8. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, et al., ”Graphene − Silica Composite Thin Films as Transparent Conductors", 2007.
  9. X. Wang, L. Zhi, K. Mu, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells", 2008. doi:10.1021/nl072838r.
  10. J. Niu, D. Yang, X. Ren, Z. Yang, Y. Liu, X. Zhu, et al., "Graphene-oxide doped PEDOT : PSS as a superior hole transport material for high- efficiency perovskite solar cell", Org. Electron. 48 (2017) 165–171. doi:10.1016/j.orgel.2017.05.044.
  11. E.B. Ã, F.C. Krebs, "Low band gap polymers for organic photovoltaics", vol. 91, 954–985,2007. doi:10.1016/j.solmat.2007.01.015.
  12. T. Xu, L. Yu, "How to design low bandgap polymers for highly efficient organic solar cells", Biochem. Pharmacol.vol. 17 (11–15, 2014. doi:10.1016/j.mattod.2013.12.005.
  13. J. Hou, H. Chen, S. Zhang, G. Li, Y. Yang, "Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes" 16144–16145, 2008.
  14. M.C. Scharber, N.S. Sariciftci, "Progress in Polymer Science Efficiency of bulk-heterojunction organic solar cells", Prog. Polym. Sci., vol. 38 1929–1940, 2013. doi:10.1016/j.progpolymsci.2013.05.001.
  15. J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, "Upconversion Luminescent Materials : Advances and Applications", 2015. doi:10.1021/cr400478f.
  16. C. Duan, L. Liang, L. Li, "Recent progress in upconversion luminescence nanomaterials for biomedical applications", 192–209, 2018. doi:10.1039/C7TB02527K.