Published 2019-01-01
Keywords
- Band Gap,
- Fluorographene,
- Graphene Oxide,
- nanococarbon
Copyright (c) 2019
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Fluorinated grapheme has a two-dimensional layer structure with a wide band gap. In the present study, Fluoro Graphene (FG) is obtained from Graphene Oxide (GO) through a deoxyfluorination reaction with the aid of Diethylaminosulphurtrifluoride (DAST). The FT-IR exhibited a peak at 1216 cm-1 and the shoulder at 1312 cm-1 were ascribed to the stretching vibration of covalent C–F bonds and C–F2 bonds, respectively. Surface morphology revealed a leafy structure in GO and a rocky structure in FG. The EDS analysis confirmed the fluorination of the graphitic structure. The TEM analysis confirmed the formation of a mixed structure of graphene and carbon dots. The results of structural, morphological and electrical properties of both graphene oxide and fluorographene show the possibility of using these samples as electronic/electrochemical devices in future.
References
[2] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. Mcgovern, B. Holland, M. Byrne, Y. K. Gunko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman.Nature Nanotechnology, 3, 9, 563, 2008. [3] B.Manoj, M.R.Ashlin and G.T.Chirayil. Scientific Reports, 8, 1,13891(2018).
[4] B. Manoj, M.R.Ashlin and G.T.Chirayil. Scientific Reports, 7, 1, 18012 (2017).
[5] C. J. Shearer, A. Cherevan, and D. Eder. Advanced Materials, 26, 15, 2295 (2014).
[6] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan. ACS Nano, 7(5), p. 4042, 2013.
[7] W. Zhang, J. Cui, C.-A. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, and G. Li, Angewandte Chemie International Edition, 48, 32, 5864, 2009.
[8] J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W.-F. Hwang, and J. M. Tour. Journal of the American Chemical Society, 130, 48,16201, 2008.
[9] F. Karlický, K. K. R. Datta, M. Otyepka, and R. Zbořil. ACS Nano, 7, 8, 6434, 2013.
[10] B.Manoj. J.ofEnvt. Research and Development. 6, 3A, 653, 2012. [11] M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri, and M. Salavati-Niasari. Scientific Reports, 6, 1, 2016.
[12] V. Mazánek, O. Jankovský, J. Luxa, D. Sedmidubský, Z. Janoušek, F. Šembera, M. Mikulics and Z. Sofer, Nanoscale, 7, 32, 13646, 2015.
[13] P. Dakshinamoorthy and S. Vaithilingam, RSC Advances, 7, 56, 34922 2017.
[14] M. Aziz, F. S. A. Halim and J. Jaafar, JurnalTeknologi, 69, 9, 2014.
[15] B. Manoj, M.R.Ashlin and G.T.Chirayil, Materials Science-Poland, 36(1), 14, 2018.
[16] W. H. Lee, J. W. Suk, H. Chou, J. Lee, Y. Hao, Y. Wu, R. Piner, D. Akinwande, K. S. Kim and R. S. Ruoff, Nano Letters, 12, 5, 2374, 2012.
[17] B. Manoj and A.G . Kunjomana, Trends in applied science research, 7, 6, 433, 2012.
[18] B Manoj.Research Journal of Biotechnology, 8, 3, 49, 2013.
[19] A.V. Ramya, A. N Mohan and B. Manoj, Material Science-Poland 34, 2, 330, 2016.
[20] B. Manoj and P. Narayanan, Journal of Minerals and Materials Characterization and Engineering, 1, 2, 39, 2013.
[21] B. K. Bindhani and A. K. Panigrahi, Journal of Nanomedicine & Nanotechnology, 6, 3, 2015.
[22] A.G. Kunjomana and B. Manoj, Russian Journal of Applied Chemistry,87, 1726, 2014.
[23] C.D. Elcey and B.Manoj, Research Journal of Chem. and Envt., 17, 8, 11-15, 2013.
[24] V. Mututu, A.K. Sunitha, R. Thomas, M. Pandey and B. Manoj, Int. J. Electrochem.Sci., 14, 4, 3752, 2019.
[25] H. Y. Liu, Z. F. Hou, C. H. Hu, Y. Yang and Z. Z. Zhu, The Journal of Physical Chemistry C, 116, 34, 18193, 2012.
[26] M.Pandey, M. Balachandran, GM Joshi, NM Ghosh and AS Vendan, Journal of Materials Science: Materials in Electronics, 30, 3, 2136, 2019.
[27] R. Thomas, E. Jayaseeli, N. S. Sharma and B. Manoj. Results in Physics, 10, 633, 2018.
[28] M. Khan, P. Jayachandran and B. Manoj, Asian Journal of Chemistry 30, 5, 988, 2018.