Research Articles
Published 2021-08-28
Keywords
- domination,
- metric dimension,
- metro domination,
- uni-metro domination
Copyright (c) 2016
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
A dominating set D of a graph G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph G(V,E) is a unique metro dominating set (in short an UMD-set) if |N(v) \cap D| = 1 for each vertex v in V-D and the minimum cardinality of an UMD-set of G is the unique metro domination number of G. In this paper, we determine unique metro domination number of P_n\times P_2.
References
- Jos'{e} C'{a}ceres, Mar'{y}a L. Puertas, Carmen Hernando, Merc`{e} Mora, Ignacio M. Pelayo, Carlos Seara and David R. Wood, On the metric dimension of cartesian product of graphs, http://www.arxiv.org/math/0507527, March 2005, 1-23.
- Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3)(2000) 99-113.
- Harary F, Melter R.A., On the Metric dimention of a graph, Ars Combinatoria 2(1976) 191-195.
- S. Kuller, B. Raghavachari and A. Rosenfied, Land marks in graphs, Disc. Appl.Math.70 (1996) 217-229
- C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math Comb. Compu. 40 (2002) 17-32.
- Muhammad Salman, Imran Javaid, Muhammad Anwar Chaudhry, Resolvability in circulant graphs, Acta Mathematica Sinica, English Series, Vol 28(9), (2012), 1851–1864
- Peter J. Slater, Leaves of trees, In Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 14 (1975) 549-559.
- P. J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55-64.
- P. J. Slater, {it Locating dominating sets}, in Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics, and Applications, Proc. Seventh Quad International Conference on the theory and applications of Graphs. John Wiley & Sons, Inc. (1995) 1073-1079.
- A. Sebo and E. Tannier, On Metric generators of graphs, Math. Opr. Res.29 (2004), no.2, 383-393.
- B. Shanmukha, B. Sooryanarayana and K.S. Harinath, Metric dimention of wheels, Far East J. Appl. Math. 8(3) (2202) 217-229.
- B. Sooryanarayana, On the metric dimension of graph, Indian J. Pure and Appl. Math. 29(4)(1998) 413 - 415.
- B. Sooryanarayana and John Sherra, Unique Metro domonination in Graphs, Adv Appl Discrete Math, Vol 14(2), (2014), 125-149.
- B. Sooryanarayana and Shanmukha B, A note on metric dimension, Far East J. Appl. Math., 5(3)(2001) 331-339.