Vol. 15 No. 3 (2016): Mapana Journal of Sciences
Research Articles

Unique Metro Domination of a Ladder

John Sherra
St. Aloysius College (Autonomous), Mangaluru
Bio
Badekara Sooryanarayana
Dr. Ambedkar Institute of Technology (Autonomous), Bengaluru
Bio

Published 2021-08-28

Keywords

  • domination,
  • metric dimension,
  • metro domination,
  • uni-metro domination

Abstract

A dominating set D of a graph G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph G(V,E) is a unique metro dominating set (in short an UMD-set) if |N(v) \cap D| = 1 for each vertex v in V-D and the minimum cardinality of an UMD-set of G is the unique metro domination number of G. In this paper, we determine unique metro domination number of P_n\times P_2.

References

  1. Jos'{e} C'{a}ceres, Mar'{y}a L. Puertas, Carmen Hernando, Merc`{e} Mora, Ignacio M. Pelayo, Carlos Seara and David R. Wood, On the metric dimension of cartesian product of graphs, http://www.arxiv.org/math/0507527, March 2005, 1-23.
  2. Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3)(2000) 99-113.
  3. Harary F, Melter R.A., On the Metric dimention of a graph, Ars Combinatoria 2(1976) 191-195.
  4. S. Kuller, B. Raghavachari and A. Rosenfied, Land marks in graphs, Disc. Appl.Math.70 (1996) 217-229
  5. C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math Comb. Compu. 40 (2002) 17-32.
  6. Muhammad Salman, Imran Javaid, Muhammad Anwar Chaudhry, Resolvability in circulant graphs, Acta Mathematica Sinica, English Series, Vol 28(9), (2012), 1851–1864
  7. Peter J. Slater, Leaves of trees, In Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 14 (1975) 549-559.
  8. P. J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55-64.
  9. P. J. Slater, {it Locating dominating sets}, in Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics, and Applications, Proc. Seventh Quad International Conference on the theory and applications of Graphs. John Wiley & Sons, Inc. (1995) 1073-1079.
  10. A. Sebo and E. Tannier, On Metric generators of graphs, Math. Opr. Res.29 (2004), no.2, 383-393.
  11. B. Shanmukha, B. Sooryanarayana and K.S. Harinath, Metric dimention of wheels, Far East J. Appl. Math. 8(3) (2202) 217-229.
  12. B. Sooryanarayana, On the metric dimension of graph, Indian J. Pure and Appl. Math. 29(4)(1998) 413 - 415.
  13. B. Sooryanarayana and John Sherra, Unique Metro domonination in Graphs, Adv Appl Discrete Math, Vol 14(2), (2014), 125-149.
  14. B. Sooryanarayana and Shanmukha B, A note on metric dimension, Far East J. Appl. Math., 5(3)(2001) 331-339.