Published 2021-10-01
Keywords
- Carbon nanotubes,
- properties,
- nanotechnology,
- applications
Copyright (c) 2022
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
One of the most distinctive inventions in the world of nanotechnology is the carbon nanotube (CNT). Many scholars around the world have been studying carbon nanotubes (CNTs) over the past two decades due to their enormous potential in a variety of sectors. Single-wall CNTs with dimensions in the nanometer range are commonly referred to as carbon nanotubes. Carbon nanotubes are also known as multi-wall CNTs, which are made up of nested single-wall CNTs that are weakly bonded together in a tree ring-like structure by van der Waals interactions. Tubes having an unknown carbon wall structure and diameters smaller than 100 nanometers are also referred to as carbon nanotubes. A carbon nanotube's length is often substantially longer than its diameter, according to standard manufacturing methods. Carbon nanotubes are capable of exhibiting a variety of remarkable properties. CNTs have distinct electrical, mechanical and optical properties that have all been thoroughly investigated. The properties and applications of carbon nanotubes are the focus of this review.
References
- Franks A. Nanotechnology. J Phys E, 20, 1442 (1987). http:// dx.doi.org/10.1088/0022-3735/20/12/001.
- Ajayan P M. Bulk metal and ceramics nanocomposites. In: Ajayan P M, Schadler L S, Braun P V, eds. Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co., 1 (2004). http:// dx.doi.org/10.1002/3527602127.ch1.
- Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996). http://dx.doi.org/10.1038/382054a0.
- Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0.
- Chang T E, Jensen L R, Kisliuk A, Pipes R B, Pyrz R, Sokolov A P. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46, 439 (2005). http://dx.doi.org/10.1016/j.polymer.2004.11.030.
- Jin F L, Park S J. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/ CL.2012.14.1.001.
- Wepasnick K A, Smith B A, Bitter J L, Howard Fairbrother D. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem, 396, 1003 (2010). http://dx.doi. org/10.1007/s00216-009-3332-5.
- Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, Ruoff R S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi. org/10.1126/science.287.5453.637.
- Ruoff R S, Tersoff J, Lorents D C, Subramoney S, Chan B. Radial deformation of carbon nanotubes by van der Waals forces. Nature, 364, 514 (1993). http://dx.doi.org/10.1038/364514a0.
- Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E. Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett, 94, 175502 (2005). http://dx.doi.org/10.1103/PhysRevLett.94. 175502.
- Yu M F, Kowalewski T, Ruoff R S. Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys Rev Lett, 85, 1456 (2000). http://dx.doi. org/10.1103/PhysRevLett.85.1456.
- Minary-Jolandan M, Yu M F. Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. J Appl Phys, 103, 073516 (2008). http://dx.doi. org/10.1063/1.2903438.
- Ajayan P M, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). http://dx.doi.org/10.1126/ science.265.5176.1212.
- Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys, 104, 2089 (1996). http://dx.doi. org/10.1063/1.470966.
- Chopra N G, Benedict L X, Crespi V H, Cohen M L, Louie S G, Zettl A. Fully collapsed carbon nanotubes. Nature, 377, 135 (1995). http://dx.doi.org/10.1038/377135a0.
- Ruoff R S, Lorents D C. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). http://dx.doi. org/10.1016/0008-6223(95)00021-5.
- Dresselhaus M S, Dresselhaus G, Eklund P C. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).
- Overney G, Zhong W, Tomanek D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D, 27, 93 (1993). http://dx.doi.org/10.1007/BF01436769.
- Robertson D H, Brenner D W, Mintmire J W. Energetics of nanoscale graphitic tubules. Phys Rev B, 45, 12592 (1992). http:// dx.doi.org/10.1103/PhysRevB.45.12592.
- Tersoff J. Energies of fullerenes. Phys Rev B, 46, 15546 (1992). http://dx.doi.org/10.1103/PhysRevB.46.15546.
- Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0.
- Falvo M R, Clary G J, Taylor R M 2nd, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 389, 582 (1997). http://dx.doi. org/10.1038/39282.
- Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto H W, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). http://dx.doi.org/10.1016/0008- 6223(95)00016-7.
- Zhu Y Q, Sekine T, Kobayashi T, Takazawa E, Terrones M, Terrones H. Collapsing carbon nanotubes and diamond formation under shock waves. Chem Phys Lett, 287, 689 (1998). http://dx.doi. org/10.1016/S0009-2614(98)00226-7.
- Yu M F, Files B S, Arepalli S, Ruoff R S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett, 84, 5552 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.5552.
- Shibutani Y, Shiozaki M, Kugimiya T, Tomita Y. Irreversible deformation of carbon nanotubes under bending. J Jpn Inst Met, 63, 1262 (1999).
- Li F, Cheng H M, Bai S, Su G, Dresselhaus M S. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett, 77, 3161 (2000). http://dx.doi. org/10.1063/1.1324984.
- Shen W, Jiang B, Han B S, Xie S. Investigation of the radial compression of carbon nanotubes with a scanning probe microscope. Phys Rev Lett, 84, 3634 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.3634.
- Wang Z L, Gao R P, Poncharal P, de Heer WA, Dai Z R, Pan Z W. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater Sci Eng C, 16, 3 (2001). http://dx.doi. org/10.1016/S0928-4931(01)00293-4.
- Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A, Ritchie R O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A, 334, 173 (2002). http://dx.doi.org/10.1016/ S0921-5093(01)01807-X.
- Sinnott S B, Shenderova O A, White C T, Brenner D W. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 36, 1 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00144-9.
- Yakobson B I. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl Phys Lett, 72, 918 (1998). http:// dx.doi.org/10.1063/1.120873.
- Ru C Q. Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J Appl Phys, 87, 7227 (2000). http:// dx.doi.org/10.1063/1.372973.
- Guanghua G, Tahir C, William A G, III. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 9, 184 (1998). http://dx.doi.org/ 10.1088/0957-4484/9/3/007.
- Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett, 80, 4502 (1998). http://dx.doi.org/10.1103/PhysRevLett.80.4502.
- Ashcroft N W, Mermin N D. Solid State Physics, Harcourt Brace, Orlando, FL (1976).
- Kim P, Shi L, Majumdar A, McEuen P L. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 87, 215502 (2001). http://dx.doi.org/10.1103/PhysRevLett. 87.215502.
- Yu C, Shi L, Yao Z, Li D, Majumdar A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 5, 1842 (2005). http://dx.doi.org/10.1021/nl051044e.
- Maultzsch J, Reich S, Thomsen C, Dobardzic E, Milosevic I, Damnjanovic M. Phonon dispersion of carbon nanotubes. Solid State Commun, 121, 471 (2002). http://dx.doi.org/10.1016/ S0038-1098(02)00025-X.
- Ishii H, Kobayashi N, Hirose K. Electron-phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Physica E, 40, 249 (2007). http://dx.doi. org/10.1016/j.physe.2007.06.006.
- Maeda T, Horie C. Phonon modes in single-wall nanotubes with a small diameter. Physica B, 263-264, 479 (1999). http://dx.doi. org/10.1016/S0921-4526(98)01415-X.
- Kasuya A, Saito Y, Sasaki Y, Fukushima M, Maedaa T, Horie C, Nishina Y. Size dependent characteristics of single wall carbon nanotubes. Mater Sci Eng A, 217-218, 46 (1996). http://dx.doi. org/10.1016/S0921-5093(96)10357-9.
- Popov V N. Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems. Carbon, 42, 991 (2004). http://dx.doi. org/10.1016/j.carbon.2003.12.014.
- Chandra B, Bhattacharjee J, Purewal M, Son Y W, Wu Y, Huang M, Yan H, Heinz T F, Kim P, Neaton J B, Hone J. Molecular-scale quantum dots from carbon nanotube heterojunctions. Nano Lett, 9, 1544 (2009). http://dx.doi.org/10.1021/nl803639h.
- Dai H, Wong E W, Lieber C M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.
- Saito R, Fujita M, Dresselhaus G, Dresselhaus M S. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204 (1992). http://dx.doi.org/10.1063/1.107080.
- Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954.
- Schonenberger C, Bachtold A, Strunk C, Salvetat J P, Forro L. Interference and Interaction in multi-wall carbon nanotubes. Appl Phys A, 69, 283 (1999). http://dx.doi.org/10.1007/s003390051003.
- Delaney P, Di Ventra M, Pantelides S T. Quantized conductance of multiwalled carbon nanotubes. Appl Phys Lett, 75, 3787 (1999). http://dx.doi.org/10.1063/1.125456.
- Bandaru P R, Daraio C, Jin S, Rao AM. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat Mater, 4, 663 (2005). http://dx.doi.org/10.1038/nmat1450.
- Cheng Y, Zhou O. Electron field emission from carbon nanotubes. Comptes Rendus Physique, 4, 1021 (2003). http://dx.doi. org/10.1016/S1631-0705(03)00103-8.
- Modi A, Koratkar N, Lass E, Wei B, Ajayan P M. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 424, 171 (2003). http://dx.doi.org/10.1038/nature01777.
- Yue G Z, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu J P, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi. org/10.1063/1.1492305.
- Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
- Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect, 115, 1125 (2007). http://dx.doi. org/10.1289/ehp.9652.
- Baughman R H, Zakhidov A A, de Heer WA. Carbon nanotubes- -the route toward applications. Science, 297, 787 (2002). http:// dx.doi.org/10.1126/science.1060928.
- Kar S, Bindal R C, Prabhakar S, Tewari P K, Dasgupta K, Sathiyamoorthy D. Potential of carbon nanotubes in water purification: an approach towards the development of an integrated membrane system. Int J Nucl Desalin, 3, 143 (2008). http://dx.doi. org/10.1504/IJND.2008.020221.
- Kim K S, Park S J. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethyleneterephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi. org/10.5714/CL.2012.13.1.051.
- Mintmire J W, Dunlap B I, White C T. Are fullerene tubules metallic? Phys Rev Lett, 68, 631 (1992). http://dx.doi.org/10.1103/ PhysRevLett.68.631.
- Sinnott S B, Shenderova O A, White C T, Brenner D W. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 36, 1 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00144-9.
- Sinha S, Barjami S, Iannacchione G, Schwab A, Muench G (2005) Off-axis thermal properties of carbon nanotube films. Journal of Nanoparticle Research 7: 651-657.
- Wu H Q, Wei X W, Shao M W, Gu J S (2004) Synthesis of zinc oxide nanorods using carbon nanotubes as templates. J. Cryst. Growth 265: 184-189.
- Calvert P (1999) Nanotube composites: a recipe for strength. Nature. 399: 210-211.
- Chen S, Yuan R, Chai Y, Min L, Li W et al. (2009) Electrochemical sensing platform based on tris (2, 2′-bipyridyl) cobalt (III) and multiwall carbon nanotubes-Nafion composite for immunoassay of carcinoma antigen-125. Electrochim Acta 54: 7242-7247.
- Shi X, Sitharaman B, Pham Q P, Spicer P P, Hudson J L et al. (2008) In vitro cytotoxicity of single-walled carbon nanotube/ biodegradable polymer nanocomposites. J Biomed Mater Res A 86: 813-823.
- Harrison B S, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28: 344-353.
- Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C et al. (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103: 3357-3362.
- Wang S F, Shen L, Zhang W D, Tong Y J (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6: 3067-3072.
- MacDonald R A, Laurenzi B F, Viswanathan G, Ajayan P M, Stegemann J P (2005) Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 74: 489-496.
- B G P Singh, C Baburao, V Pispati et al (2012) Carbon nanotubes. A novel drug delivery system, International Journal of Research in Pharmacy and Chemistry 2: 523-532.