Vol. 21 No. 3 (2022): Mapana Journal of Sciences
Research Articles

Corrosion characteristics of BaTiO3 perovskite coatings on AZ31 alloy

Rajamohan Y L
Alagappa University, Karaikudi.
Bio
Cyril A
Raja Dorasingam Government Arts College, Sivaganga.
Bio

Published 2022-12-06

Keywords

  • Mg alloys,
  • AZ31,
  • Mg alloys; AZ31; BaTiO3, Silicone resign, Corrosion,
  • Silicone resin,
  • Corrosion

Abstract

In this work, we have synthesized BaTiO3 perovskite material by hydrothermal procedure. The BaTiO3 perovskite material was mixed with silicone resign and coated over AZ31 by doctor blade method and dried in oven at 90 ºC. The coating was cured for 2-6 h before commencing the tests.  Initially, open circuit potential was recorded and preceded for electrochemical impedance (EIS) measurements. Finally, linear sweep voltammogram or Tafel plot was recorded and data was plotted. It is noticed that the OCP was -0.25 V (vs SCE) and corrosion current density found around 6 x10-7 A/cm2. The results reveal that perovskite based BaTiO3 coatings demonstrated a noble shift in the corrosion potential of AZ31 alloys in NaCl medium. The presence of silicone resigns played a vital role in developing homogeneous BaTiO3 perovskite material coatings over AZ31 alloy.  

References

  1. Mordike, B. L. and Ebert, T. (2001) Magnesium: Properties- Applications-Potential, Materials Science and Engineering A, 302 (1), 37-45.
  2. Thomas, S., Medhekar, N. V., Frankel, G. S., and Birbilis, N. (2015). Corrosion mechanism and hydrogen evolution on Mg. Current Opinion in Solid State and Materials Science, 19(2), 85–94.
  3. Wu, R., Yan, Y., Wang, G., Murr, L. E., Han, W., Zhang, Z., & Zhang, M. (2014). Recent progress in magnesium–lithium alloys. International Materials Reviews, 60(2), 65–100.
  4. Tokunaga, T., Ohno, M., and Matsuura, K. (2018). Coatings on Mg alloys and their mechanical properties: A review. Journal of Materials Science & Technology, 34(7), 1119–1126.
  5. Singh Raman, R. K., Birbilis, N., & Efthimiadis, J. (2004). Corrosion of Mg alloy AZ91 – the role of microstructure. Corrosion Engineering, Science and Technology, 39(4), 346–350.
  6. Esmaily, M., Shahabi-Navid, M., Svensson, J.-E., Halvarsson, M., Nyborg, L., Cao, Y., and Johansson, L.-G. (2015). Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50. Corrosion Science, 90, 420–433.
  7. Esmaily, M., Blücher, D. B., Lindström, R. W., Svensson, J.-E., & Johansson, L. G. (2015). The Influence of SO2 on the Corrosion of Mg and Mg-Al Alloys. Journal of The Electrochemical Society, 162(6), C260–C269.
  8. Pu, Z., Yang, S., Song, G.-L., Dillon, O. W., Puleo, D. A., and Jawahir, I. S. (2011). Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scripta Materialia, 65(6), 520–523.
  9. Danaie, M., Asmussen, R. M., Jakupi, P., Shoesmith, D. W., & Botton, G. A. (2013). The role of aluminum distribution on the local corrosion resistance of the microstructure in a sand-cast AM50 alloy. Corrosion Science, 77, 151–163.
  10. Asmussen, R. M., Jakupi, P., Danaie, M., Botton, G. A., & Shoesmith, D. W. (2013). Tracking the corrosion of magnesium sand cast AM50 alloy in chloride environments. Corrosion Science, 75, 114–122.
  11. Shahabi-Navid, M., Esmaily, M., Svensson, J.-E., Halvarsson, M., Nyborg, L., Cao, Y., & Johansson, L.-G. (2014). NaCl-Induced Atmospheric Corrosion of the MgAl Alloy AM50-The Influence of CO2. Journal of The Electrochemical Society, 161(6), C277–C287.
  12. Kwon, J., Baek, S.-M., Jung, H., Kim, J. C., Lee, S.-Y., & Park, S. S. (2021). Role of microalloyed Sm in enhancing the corrosion resistance of hot-rolled Mg–8Sn–1Al–1Zn alloy. Corrosion Science, 185, 109425.
  13. Li, J., Xie, D., Yu, H., Liu, R., Shen, Y., Jiang, H., … Qin, G. (2020). Microstructure and mechanical property of multi-pass low-strain rolled Mg-Al-Zn-Mn alloy sheet. Journal of Alloys and Compounds, 155228.
  14. Wu, G., Dai, W., Zheng, H., & Wang, A. (2010). Improving wear resistance and corrosion resistance of AZ31 magnesium alloy by DLC/AlN/Al coating. Surface and Coatings Technology, 205(7), 2067–2073.
  15. Han, B. (2017). A Composite Anodic Coating Containing Graphene on AZ31 Magnesium Alloy. International Journal of Electrochemical Science, 9829–9843.
  16. Avedesian, M.M., Baker, H. (1999). ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM International, USA.
  17. Uddin, M. S., Hall, C., & Murphy, P. (2015). Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Science and Technology of Advanced Materials, 16(5), 053501.
  18. Fridrich, H.E., Mordike, B.L. (2006). Magnesium Technology, Springer, Germany.
  19. Sunil, B. R., Ganesh, K. V., Pavan, P., Vadapalli, G., Swarnalatha, C., Swapna, P., Pradeep Kumar Reddy, G. (2016). Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling. Journal of Magnesium and Alloys, 4(1), 15–21.
  20. Li, L., & Nam, N. D. (2016). Effect of yttrium on corrosion behavior of extruded AZ61 Mg alloy. Journal of Magnesium and Alloys, 4(1), 44–51.
  21. Saikrishna, N., Pradeep Kumar Reddy, G., Munirathinam, B., & Ratna Sunil, B. (2016). Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy. Journal of Magnesium and Alloys, 4(1), 68–76.
  22. Ramajo, L., Catro, M.S. and Reboredo, M.M. (2007) Effect of Silane as Coupling Agent on the Dielectric Properties of BaTiO3-Epoxy Composites. Composites Part A: Applied Science and Manufacturing, 38, 1852-1959.
  23. Marciniec, B., Krysztafkiewicz, A., & Domka, L. (1983). Wettability of silane films on silica fillers. Colloid and Polymer Science, 261(4), 306–311.