Statistical Optimization of Lipase Production From Mutagenic Strain of Newly Isolated Bacillus licheniformis MLP


  • Dhandayuthapani Arignar Anna Govt. Arts College, Tamil Nadu.
  • Lakshmi Arignar Anna Govt. Arts College, Tamil Nadu.



Bacillus Licheniformis, Lipase, Mutation, Ribotyping, Statistical Modeling, Responce Surface Methodology


In the present study, Seven separate bacterial strains were isolated from oil contaminated soil and screened using 1%(v/v) oilve oil based on high lipase producitivty. The maximum lipase produced strain was identified as Bacillus licheniformis based on 16s ribotyping. Then this selected wild strain was subjected to UV irradiation and produced mutant as B. licheniformis MLP. The nutritional parameters statistically optimized using fractional factorial Central Composite Design - Responce Surface Methodology were sunflower oil 5.5%, glucose 5.5%, peptone 5.5% and Zn 55µML-1 with maximum lipase activity of 37.21±0.12 UmL-1. Further, the maximum lipase production of 52.22±0.21 UmL-1was obtained by B. licheniformis MLP when grown in optimized medium at 48th h under the optimized pH 7 and temperature 40oC. The lipase production by B. licheniformis MLP using sunflower oil, glucose, peptone and Zn employing statistical modeling towards industrial production.

Author Biographies

Dhandayuthapani, Arignar Anna Govt. Arts College, Tamil Nadu.

Department of Botany, Arignar Anna Govt. Arts College, Cheyyar, Thiruvannamalai District, Tamil Nadu.

Lakshmi, Arignar Anna Govt. Arts College, Tamil Nadu.

PG & Research Department of Botany, Arignar Anna Govt. Arts College, Cheyyar, Thiruvannamalai District, Tamil Nadu.


Acikel, U., Ersan, M & Sag-Acikel, Y. (2011). The effects of the composition of growth medium and fermentation conditions on the production of lipase by Rhyzopus delemar, Turkish Journal of Biology, 35, 35-44.

Al Mohaini, M., Farid, A., Muzammal, M., Ghazanfar, S., Dadrasnia, A., Alsalman, A.J., Al Hawaj, M.A., Alhashem, Y.N. & Ismail, S. 2022. Enhancing lipase production of Bacillus salmalaya strain 139SI using different carbon sources and surfactants, Applied Microbiology, 2(1), 237-247.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W & Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, 25(17), 3389-3402.

Chandra, P., Enespa, R., Singh, Arora, P. (2020). Microbial lipases and their industrial applications: a comprehensive -Review, Microbial Cell Factories, 19,169.

Christianah, A.T. B., Musa, H & Adeyinka, A.T. (2012). Utilization of nutrients for growth and lipase production by some selected lipolytic fungi, New York Science Journal, (10),136–141.

Colla, L.M., Primaz, A.L., Benedetti, S., Loss, R.A., Lima, M.D., Reinehr, C.O., Bertolin, T.E & Costa, J.A.V. 2016. Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Brazilian Journal of Microbiology, 47, 461-467.

Gupta, R., Gupta, N & Rathi, P. (2004). Bacterial lipase: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64: 763-781.

Gupta, N., Mehra, G. & Gupta R. 2004. A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology, Canadian Journal of Microbiology, 50,361–368.

Haniya, M., Naaz, A., Sakhawat, A., Amir, S., Zahid, H & Syed, S.A., 2017. Optimized production of lipase from Bacillus subtilis PCSIRNL-39. African Journal of Biotechnology, 16(19),1106-1115. DOI: 10.5897/AJB2017.15924.

Hasan, F., Shah, A. A & Hameed, A. (2006). Industrial applications of microbial lipases, Enzyme and Microbial. Technology, 39, 235-251.

Hopwood, D.A, Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M & Schrempf H. (1985). Genetic manipulation of streptomyces: a laboratory manual, the John Innes foundation, Norwich, United Kingdom.

Isiaka Adetunji, A. & Olufolahan Olaniran, A. 2018. Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnology & Biotechnological Equipment, 32(6), 1514-1526.

Kamini, N. R., Mala, J. G. S., & Puvanakrishnan, R. (1998). Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake, Process Biochemistry, 33(5), 505-511.

Krieger, N., Taipa, M.A., Melo, E.H.M., Lima, J.L., Baros, M.R.A & Cabral, J.M.S. 1999. Purification of Penicilum citrinum lipase by chromatographic processes, Bioprocess Engineering, 20, 59-65.

Kumari, A., Mahapatra, P. & Banerjee, R. 2009. Statistical optimization of culture conditions by response surface methodology for synthesis of lipase with Enterobacter aerogenes. Brazilian Archives of Biology and Technology, 52, 1349–1356.

Oliveira, F., Souza, C.E., Peclat, V.R., Salgado, J.M., Ribeiro, B.D., Coelho, M.A., Venâncio, A & Belo, I. 2017. Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 102, 268-277.

Pramitasari, M.D & Ilmi, M. (2021). Optimization of Medium for Lipase Production from Zygosaccharomyces mellis SG1. 2 Using Statistical Experiment Design. Microbiology and Biotechnology Letters, 49(3),337-345.

Rathi, P., Saxena, R.K & Gupta, R. (2001). A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochemistry, 37, 187 - 192.

Saitou, N & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. DOI: 10.1093/oxfordjournals.molbev.a040454.

Salihu, A & Alam, Z.Md. (2012). Production and applications of microbial lipases: A review, Scientific Research and Essays, 7(30), 2667-2677. DOI: 10.5897/SRE11.2023.

Sathyavrathan, P & Jaya, S. (2013). Production of lipase and protease from Pseudomonas fragi NRRL-B727 and optimization studies of the protease without the lipase presence. . International Journal of ChemTech Research, 5(4): 1541-1544.

Saxena, A.K., Kumar, M., Chakdar, H., Anuroopa, N. & Bagyaraj, D. 2020. Bacillus species in soil as a natural resource for plant health and nutrition, Journal of Applied Microbiology, 128, 1583–1594. doi: 10.1111/jam.14506.

Saxena, R. K., Davidson, W. S., Sheoran, A & Giri, B. (2003). Purification and characterization of an alkaline lipase from Aspergillus carneus, Process Biochemistry, 39, 239-247.

Soleymani, S., Alizadeh, H., Mohammadian, H., Rabbani, E., Moazen, F., Sadeghi, H.M., Shariat, Z.S., Etemadifar, Z. & Rabbani, M., 2017. Efficient media for high lipase production: one variable at a time approach. Avicenna journal of medical biotechnology, 9(2),82-86. PMID: 28496947; PMCID: PMC5410133.

Sumanjelin, B., Ramachandra Rao, C.S.V & Satish Babu, R. (2013). Isolation, characterization of lipase producing bacteria from crude rice bran oil and optimization studies by response surface methodology, Journal of Chemical, Biological and Physical Science, 3(1),289-296.

Szymczak, T., Cybulska, J., Podleśny, M. & Frąc, M. 2021. Various perspectives on microbial lipase production using agri-food waste and renewable products. Agriculture, 11(6), 540.

Tamura, K., Stecher, G., Peterson, D., Filipski, A & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version6.0’, Molecular Biology and Evolution, 30(12), 2725-2729.

Tembhurkar, V. R., Dama, L.B., Attarde, N. P & Zope, P. S. 2012. Production and characterization of extracellular lipases of Staphylococcus sp. isolated from oil contaminated soil, Trends in Biotechnology Research, 1(1),36-41.

Thabet, H.M., Pasha, C., Ahmed, M & Linga, V.R. (2012). Isolation of novel lipase producing Sporobolomyces salmonicolor OVS8 from oil mill spillage and enhancement of lipase production, Jordan Journal of Biological Science, 5(4),301 -306.

Treichel, H., de Oliveira, D., Mazutti, M.A., Di Luccio, M & Oliveira, J.V. (2010). A review on microbial lipases production, Food and Bioprocess Technology, 3, 182–196.

Additional Files