Coupling Distance in Graphs

Authors

  • Riyaz Ur Rehman A Ph.D., Research Scholar
  • A Mohamed Ismayil

DOI:

https://doi.org/10.12723/mjs.65.1

Keywords:

Coupling distance, coupling eccentricity, coupling radius, coupling diameter

Abstract

In this paper the coupling distance of simple connected graphs are introduced. The different parameters of coupling distance like coupling eccentricity, coupling radius, coupling diameter, coupling center and coupling periphery are defined. The coupling parameters for different standard graphs are obtained.

References

Buckley, F., & Harary, F. (1990). Distance in graphs (Vol. 2). Redwood City: Addison-Wesley.

Chartrand, G., Johns, G. L., & Tian, S. (1993). Detour distance in graphs. In Annals of discrete mathematics (Vol. 55, pp. 127-136). Elsevier.

Harary, F. (2001). Graph theory, Narosa Publ. House, New Delhi.

Janakiraman, T. N., Bhanumathi, M., & Muthammai, S. (2010). Eccentric domination in graphs. International Journal of Engineering Science, Advanced Computing and Bio Technology, 1(2), 55-70.

Kathiresan, K. M., Marimuthu, G., & West, S. (2007). Superior distance in graphs. Journal of combinatorial mathematics and combinatorial computing, 61, 73.

Kathiresan, K. M., & Sumathi, R. (2009). A study on signal distance in graphs. Algebra, Graph Theory, Appl, 50-54.

Kotzig, A. (1975). Degrees of vertices in a friendship graph. Canadian Mathematical Bulletin, 18(5), 691-693.

Rényi, A., & Sós, V. T. (1966). On a problem of graph theory. Studia Sci. Math. Hungar, 1, 215-235.

Veeranjaneyulu, J., & Varma, P. L. N. (2019). Circular d-distance and path graphs. International Journal of Recent Technology and Engineering, 7, 219-223.

Additional Files

Published

2023-07-14