Studies on Phytochemical Analysis, Antioxidant, Antibacterial and Larvicidal Properties of the Acacia nilotica Fruit Extracts
Published 2023-01-18
Keywords
- Acacia nilotica,
- Aedes albopictus,
- Aluminium chloride assay,
- Antimicrobial activity,
- FRAP assay
- mosquito larvicide bioassay ...More
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
In the present study fruit of Acacia nilotica was chosen to evaluate its antioxidant, larvicidal and antibacterial properties. Phytochemical screening of aqueous and alcohol extracts of the plant fruits affirmed the presence of carbohydrates, reducing sugar, phenol, flavonoid, terpenoid, saponin and steroid. The antioxidant properties of the aqueous and alcohol fruit extracts were noted as 10.11±0.035 and 9.75±0.023 mM of FeSO4 for Ferric Reducing Antioxidant Power (FRAP) assay respectively. The potency of antimicrobial activity of the aqueous and alcohol extract of A. nilotica fruit were tested against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillussubtilis, and Escherichiacoli. The alcohol extract against E. coli, exhibited the highest antimicrobial activity. Aqueous extracts of A. nilotica fruit showed potential toxicity against Aedes albopictus larvae with LC50 value of 142.074 mg L-1. Present findings clearly indicated that A. nilotica fruit extracts could be most effectively used as a natural antioxidant, antibacterial and larvicidal agent.
References
- Ncube, N.S., Afolayan, A.J., Okoh, A.I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology, 7, 1797–1806. https://doi.org/10.5897/AJB07.613.
- Rios, J.L., Recio, M.C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100, 80–84. https://doi.org/10.1016/j.jep.2005.04.025.
- Hérouart, D., Gontier, E., Sangwan, R.S., Sangwan–Norreel, B.S. (1991). Analysis of the potential use of androgenic Datura innoxia for the development of cell cultures producing high amounts of Tropane alkaloids. Journal of Experimental Botany, 42, 1073–1076. https://doi.org/10.1093/jxb/42.8.1073.
- Mattson, M.P., Cheng, A. (2006). Neurohormetic phytochemicals: low–dose toxins that induce adaptive neuronal stress responses. Trends in Neurosciences, 29(11), 632–639. https://doi.org/10.1016/j.tins.2006.09.001.
- Singh, U., Jialal, I. (2006). Oxidative stress and atherosclerosis. Pathophysiology, 13, 129–142. https://doi.org/10.1016/j.pathophys.2006.05.002.
- Meng, J., Fang, Y., Zhang, A., Chen, S., Xu, T., Ren, Z., Han, G., Liu, J., Li, H., Zhang, Z., Wang, H. (2011). Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province. Food Research International, 44(9), 2830–2836. https://doi.org/10.1016/j.foodres.2011.06.032.
- Singh, B.N., Singh, B.R., Singh, R.L., Prakash, D., Sharma, B.K., Singh, H.B. (2009a). Antioxidant and anti-quorum sensing activities of green pods of Acacia nilotica L. Food and Chemical Toxicology, 47, 778–786. https://doi.org/10.1016/j.fct.2009.01.009.
- Harbottle, H., Thakur, S., Zhao, S., White, D.G. (2006). Genetics of antimicrobial resistance. Animal Biotechnology,17, 111–124. doi: 10.1080/10495390600957092.
- Akram, M., Shahid, M., Khan, A.U. (2007). Etiology and antibiotics resistance pattern of community acquired urinary infections in J N M C Hospital Aligarh India. Annals of Clinical Microbiology and Antimicrobials,6, 4. doi: 10.1186/1476–0711–6–4.
- Basak, S., Singh, P., Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria: a study. 2016, 1–5.Journal of Pathogens, http://dx.doi.org/10.1155/2016/4065603.
- Dabur, R., Gupta, A., Mandal, T.K., (2007). Antimicrobial activity of some medicinal plants. African Journal of Traditional, Complementary and Alternative Medicines, 4(3), 313–318. http:// doi.org/10.4314/ajtcam.v4i3.31225.
- World Health Organization. 2020. Urgent health challenges for the next decade. https://www.who.int/news-room/photo-story/photo-story-detail/urgent-health-challenges-for-the-next-decade.
- Vatandoost, H., Vaziri, M. (2001). Larvicidal activity of neem extract (Azadirachta indica) against mosquito larvae in Iran. Pestology, 25, 69–72.
- Das, M.K., Ansari, M.A. (2003). Evaluation of repellent action of Cymbopoganmartiniimartinii. Stapf var sofia oil against Anopheles sundaicus in tribal villages of Car Nicobar Island, Andaman Nicobar Islands, India. Journal of Vector Borne Diseases, 40, 100–104. http://www.mrcindia.org/journal/issues/403100.pdf.
- Nigam, S.K., Venkatakrishna, B.H., Bhatt, H. (2001). Occupational cancer: Introduction and intervention. Indian Journal of Occupational Health, 44, 79–88.
- Mahmood, I., Imadi, S.R., Shazadi, K., Gul, A., Hakeem, K.R. (2016). Effects of pesticides on environment. In: Hakeem, K., Akhtar, M., Abdullah, S. (eds) Plant, soil and microbes. Springer, Cham, pp 253–269. https://doi.org/10.1007/978-3-319-27455-3_13.
- Aktar, M.W., Sengupta, D., Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7.
- Chowdhury, N., Laskar, S., Chandra, G. (2008). Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complementary and Alternative Medicine, 8, 62. https://doi.org/10.1186/1472-6882-8-62.
- Rawani, A., Ghosh, A., Chandra, G. (2013). Mosquito larvicidal and antimicrobial activity of synthesized nano–crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropica, 128(3), 613–22. https://doi.org/10.1016/j.actatropica.2013.09.007.
- Rather, L.J., ul-Islam, S., Mohammad, F. (2015). Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustainable Chemistry and Pharmacy, 2, 12-30. http://dx.doi.org/10.1016/j.scp.2015.08.002i.
- Gupta, R.S., Kachhawa, J.B., Chaudhary, R. (2004). Antifertility effects of methanolic pod extract of Albizia lebbeck Benth. in male rats. Asian Journal of Andrology, 6(2), 155–159.
- Sofowora, A. (1993). Medicinal plants and traditional medicine in Africa (pp. 150–153). John Wiley and son Ltd.
- Evans, W.C. (2002). Trease and Evans Pharmacogonasy, 15th ed., W.B. Sounders Co., London.
- Idu, M., Igeleke, C.L. (2012). Antimicrobial activity and Phytochemistry of khaya senegalensis roots. International Journal of Ayurvedic and Herbal Medicine, 2, 415– 422. https://doi.org/10.17582/journal.pjar/2019/32.1.46.51.
- Singleton, V.L., Orthofer, R., Lamuela–Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymology, 299, 152–179. https://doi.org/10.1016/S0076–6879(99)99017–1.
- Ghasemzadeh, A., Hawa, Z.E., Jaafar, A.R. (2010). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia Young Ginger (Zingiber officinale Roscoe). Molecule, 15, 4324–4333. https://doi.org/10.3390/molecules15064324.
- Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complimentary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182. https://doi.org/10.38212/2224–6614.2748.
- Oyaizu, M. (1986). Studies on products of browning reactions: antioxidative activities of product of browning reaction prepared from glucosamine. Japan Journal of Nutrition, 44, 307–315. https//dx.doi.org/10.5264/eiyogakuzashi.44.307.
- Benzie, I.F.F., Strain, J.J. (1999). Ferric reducing antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymology, 299, 15–27. https://doi.org/10.1016/s0076–6879(99)99005–5.
- World Health Organization. 2005. Guidelines for laboratory and field testing of mosquito larvicides. https://apps.who.int/iris/handle/10665/69101.
- Zhang, Y.W., Due, D.Q., Zhang, L., Chen, Y.Z., Yao, X.S. (2001). Effects of Ginsenosides from Panax ginseng on cell–to–cell communication function mediated by gap junctions, Planta Medica, 67, 417–422. https://doi.org/10.1055/s–2001–15816.
- Lalitha, T.P., Jayanti, P. (2012). Preliminary studies on phytochemicals and antimicrobial activity of solvent extracts of Eichhornia crassipes (Mart.) Solms. Asian Journal of Plant Science and Research, 2, 115–122.
- Saad, B., Sing, Y.Y., Nawi, M.A., Hashim, N., Mohamedali, A., Saleh, M.I., Sulaiman, S.F., Talib, K., Ahmad, K., Ali, A.S.M. (2007). Determination of synthetic phenolic antioxidants in food items using reversed–phase HPLC. Food Chemistry, 105, 389–394. https://doi.org/10.1016/j.foodchem.2006.12.025.
- Botterweck, A., Verhagen, H., Goldbohm, R., Kleinjans, J., Brandt, P.V.D., Brandt, P.V.D. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands Cohort Study. Food and Chemical Toxicology, 38, 599–605. https://doi.org/ 10.1016/S0278–6915(00)00042–9.
- Olayinka, A.A., Anthony, I.O. (2010). Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complementary and Alternative Medicine, 10(21), 1–8. https://doi.org/10.1186/1472–6882–10–21.
- Kaur, G., Sharma, A.K., Karnwal, A. (2016). Antimicrobial activity of Acacia nilotica against various clinical isolates. Elixir Applied Botany, 97, 42260–42262.
- Arias, M.E., Gomez, J.D., Cudmani, N.M., Vattuone, M.A., Isla, M.I. (2004). Antibacterial activity of ethanolic and aqueous extracts of Acacia aroma Gill. ex Hook et Arn. Life Sciences, 75(2), 191–202. https:// doi.org/10.1016/j.lfs.2003.12.007.
- Iwaki, K., Koya–Miyata, S., Kohno, K., Ushio, S., Fukuda, S. (2006). Antimicrobial activity of Polygonum tinctorium Lour: extract against oral pathogenic bacteria. Journal of Natural Medicine, 60, 121–125. https://doi.org/10.1007/s11418–005–0025–z.
- Barik, M., Rawani, A., Laskar, S., Chandra, G. (2019). Evaluation of mosquito larvicidal activity of fruit extracts of Acacia auriculiformisagainst the Japanese encephalitis vector Culex vishnui. Natural Product Research, 33(11), 1682–1686. https://doi.org/10.1080/14786419.2018.1428585.
- Hawley, W.A. (1988). The biology of Aedes albopictus. Journal of the American Mosquito Control Association. Supplement, 1, 1–39.
- Gratz, N.G. (2004). Critical review of the vector status of Aedes albopictus. Medical and veterinary entomology, 18, 215–227. https://doi.org/10.1111/j.0269-283X.2004.00513.x.
- Paupy, C., Delatte, H., Bagny, L., Corbel, V., Fontenille, D. (2009). Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes and infection, 11, 1177–1185. https://doi.org/10.1016/j.micinf.2009.05.005.
- Bharati, Minu., Rai, P., Saha, D. (2019). Insecticide resistance in Aedes albopictus Skuse from sub–Himalayan districts of West Bengal, India. Acta Tropica, 192, 104–111. https://doi.org/10.1016/j.actatropica.2019.02.007.
- Benelli, G., Rajeswary, M., Govindarajan, M. (2018). Towards green oviposition deterrents? Effectiveness of Syzygiumlanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environmental science and pollution research international, 25(11), 10218–10227. https://doi.org/10.1007/s11356-016-8146-3.
- Govindarajan, M., Vaseeharan, B., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Al–Anbr, M.N., Alyahya, S.A., Maggi, F., Benelli, G. (2018). High efficacy of (Z)–γ–bisabolene from the essential oil of Galinsoga parviflora (Asteraceae) as larvicide and oviposition deterrent against six mosquito vectors. Environmental science and pollution research international, 25(11), 10555–10566. https://doi.org/10.1007/s11356-018-1203-3.
- Bedini, S., Flamini, G., Ascrizzi, R., Venturi, F., Ferroni, G., Bader, A., Girardi, J., Conti, B. (2018). Essential oils sensory quality and their bioactivity against the mosquito Aedes albopictus. Scientific reports, https://doi.org/10.1038/s41598-018-36158-w.
- Govindarajan, M., Benelli, G. (2016). Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicology and environmental safety., 133, 395–402. https://doi.org/10.1016/j.ecoenv.2016.07.035.
- Govindarajan, M., Rajeswary, M., Hoti, S.L., Bhattacharyya, A., Benelli, G. 2016. Eugenol, α–pinene and β–caryophyllene from Plectranthus barbatus essential oil as eco–friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitology research, 115(2), 807–815. https://doi.org/10.1007/s00436-015-4809-0.
- Govindarajan, M., Sivakumar, R., Rajeswary, M., Yogalakshmi, K. (2013). Chemical composition and larvicidal activity of essential oil from Ocimumbasilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experimental parasitology, 134(1), 7–11. https://doi.org/10.1016/j.exppara.2013.01.018.
- Chaubal, R., Pawar, P.V., Hebbalkar, G.D., Tungikar, V.B., Puranik, V.G., Deshpande, V.H., Deshpande, N.R. (2005). Larvicidal activity of Acacia nilotica extracts and isolation of D–pinitol—a bioactive carbohydrate. Chemistry & biodiversity, 2(5), 684–8. https://doi.org/10.1002/cbdv.200590044.
- Elkhidr, M.E., Abdo, I., Madani, M., Abdelghani, S., Waggiallah, H.A., Eltayeb, L.B. (2020). Toxicity of water extract of Acacia nilotica fruits against mosquito larvae: an experimental study. Entomology and Applied Science Letters, 7(3), 84–90.
- Taura, D.W., Mukhtar, M.D., Adoum, O.A. (2004). Lethality of the aqeous extracts of Acacia nilotica, Guiera senegalensis, Kigelia africana and Securidacalongepedunculata on culex mosquito larva. Ife Journal of Science, 6(2), 115–118. https://doi.org/10.4314/ijs.v6i2.32135.
- Musau, J.K., Mbaria, J.M., Nguta, J.M., Mathiu, M., Kiama, S.G. (2016). Phytochemical composition and larvicidal properties of plants used for mosquito control in Kwale County, Kenya. International Journal of Mosquito Research, 3(3), 12–17.