Removal of Corafix Yellow GD3R using Halimeda macroloba and its impact on Macrotyloma uniflorum

Authors

  • M. Poonkothai Avinashiingam Institute for Home Science and Higher Education for Women, Coimbatore
  • Yuvanthi P.M. Research Scholar

DOI:

https://doi.org/10.12723/mjs.65.7

Keywords:

Halimeda macroloba, Corafix yellow GD3R, Optimization, Characterization, Phytotoxicity, Decolorization

Abstract

Synthetic aromatic chemicals known as dyes are primarily employed in the textile industry and are fatal if released into aquatic and terrestrial ecosystems without proper treatment. The present study characterizes the biosorption efficiency of Halimeda macroloba for the removal of Corafix Yellow GD3R dye from the aqueous solutions. At different concentrations of dye (100-500mg/L), biosorbent dose (100-500mg/L), pH (4-10), temperature (20°C - 40°C) and incubation period (24-120hrs), the ability of seaweed to remove the Corafix Yellow GD3R dye was evaluated. Maximum removal of Corafix Yellow GD3R (84%) was observed at pH 8 in the medium amended with 200 mg/L of dye, treated with 300 mg/L of biosorbent at 25°C. Desorption using 0.1N NaOH revealed a 60% of recovery on the first day. The adsorbate – adsorbent interactions were established using UV-Vis and FT-IR studies. The detoxified nature of the treated dye solution was verified by the significant growth of Macrotyloma uniflorum (Horse gram). H. macroloba, under optimal conditions effectively removed the dye and may be used in the removal of pollutants from textile industrial effluents, providing a clean and green eco-friendly approach to society.

 

Author Biography

Yuvanthi P.M. , Research Scholar

Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore – 641 043, Tamil Nadu, India

References

Boretti, A., and Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 1-6.https://doi.org/10.1038/s41545-019-0039-9.

Mohideen, K. R., and Muthuraju, P. (2016). An analysis of trend and growth rate of textile industry in India. Shanlax International Journal of Commerce, 4(3).

Manzoor, J., and Sharma, M. (2020). Impact of textile dyes on human health and environment.In Impact of textile dyes on public health and the environment (pp. 162-169).IGI Global.https://doi.org/10.4018/978-1-7998-0311-9.ch008.

Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., and Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160.https://doi.org/10.1016/j.ecoenv.2021.113160

Mehta, M., Sharma, M., Pathania, K., Jena, P. K., and Bhushan, I. (2021). Degradation of synthetic dyes using nanoparticles: a mini-review. Environmental Science and Pollution Research, 28(36), 49434-49446.https://doi.org/10.1007/s11356-021-15470-5.

Lyu, Y., Liu, Y., Guo, Y., Tian, J., and Chen, L. (2021). Managing water sustainability in textile industry through adaptive multiple stakeholder collaboration. Water Research, 205, 117655.https://doi.org/10.1016/j.watres.2021.117655

Horobin, R. W., Stockert, J. C., and Zhang, H. (2022). Reactive dyes for living cells: Applications, artefacts, and some comparisons with textile dyeing. Coloration Technology, 138(1), 3-15.https://doi.org/10.1111/cote.12577.

Tiwari, A., Joshi, M., Salvi, N., Gupta, D., Gandhi, S., Rajpoot, K., and Tekade, R. K. (2022). Toxicity of pharmaceutical azo dyes. In Pharmacokinetics and Toxicokinetic Considerations (pp. 569-603). Academic Press.https://doi.org/10.1016/B978-0-323-98367-9.00004-4.

Bustos-Terrones, Y. A., Hermosillo-Nevárez, J. J., Ramírez-Pereda, B., Vaca, M., Rangel-Peraza, J. G., Bustos-Terrones, V., and Rojas-Valencia, M. N. (2021).Removal of BB9 textile dye by biological, physical, chemical, and electrochemical treatments. Journal of the Taiwan Institute of Chemical Engineers, 121, 29-37.https://doi.org/10.1016/j.jtice.2021.03.041.

Elgarahy, A. M., Elwakeel, K. Z., Mohammad, S. H., and Elshoubaky, G. A. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 4, 100209.https://doi.org/10.1016/j.clet.2021.100209.

Jadhav, A. C., and Jadhav, N. C. (2021). Treatment of textile wastewater using adsorption and adsorbents. In Sustainable technologies for textile wastewater treatments (pp. 235-273).Woodhead Publishing.https://doi.org/10.1016/B978-0-323-85829-8.00008-0.

El-Sheekh, M., and Abomohra, A. E. F. (Eds.). (2021). Handbook of Algal Biofuels: Aspects of Cultivation, Conversion, and Biorefinery. First edition, Elsevier Publications.

Phugare, S.S., Kalyani, D.C,, Patil, A.V. and Jadhav, J.P. (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies, Journal of Hazardous Materials., 186, 713-723.

Akar, S.T., Akar, T. and Cabuk, A. (2009) Decolourisation of a textile dye, reactive red 198 (RR198) by Aspergillus parasiticus fungal biosorbent. Brazilian Journal of Chemical Engineering., 26, 399-405.

Abdul Baki, A.S. and Anderson, J.O. (1973) Vigour determination in soybean seed by multiple criteria, Crop Science., 13, 630-633.

Kepel, R. C., Lumingas, L. J., Tombokan, J. L., and Mantiri, D. M. (2021). Biomineral characterization and phytochemical profile of green algae Halimedamacroloba and Halimedaopuntia from coastal waters of TanjungMerah, Bitung City, North Sulawesi, Indonesia. Aquaculture, Aquarium, Conservation & Legislation, 14(6), 3217-3230.

Lv, G. Y., Cheng, J. H., Chen, X. Y., Zhang, Z. F., and Fan, L. F. (2013). Biological decolourization of malachite green by Deinococcus radiodurans R1. Bioresource Technology, 144, 275-280.https://doi.org/10.1016/j.biortech.2013.07.003.

Bazrafshan, E., and Mahvi, A. H. (2014). Textile wastewater treatment by electrocoagulation process using aluminum electrodes. Iranian journal of health sciences, 2(1), 16-29.

Mokhtar, N., Aziz, E. A., Aris, A., Ishak, W. F. W., and Ali, N. S. M. (2017). Biosorption of azo-dye using marine macro-alga of Euchema spinosum. Journal of Environmental Chemical Engineering, 5(6), 5721-5731. https://doi.org/10.1016/j.jece.2017.10.043

Haddadian, Z., Shavandi, M.A., Abidin, Z.Z., Razi, A.F. and Ismail, M.H.S. (2013) Removal methyl orange from aqueous solutions using dragon fruit (Hylocereusundatus) foliage, Chemical Science Transactions., 2(3), 900-910. https://doi.org/10.7598/cst2013.439.

Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., and Sikarwar, S. (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C, 32(1), 12-17.https://doi.org/10.1016/j.msec.2011.08.018.

Aravindhan, R., Rao, J. R., and Nair, B. U. (2007). Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpascalpelliformis. Journal of Hazardous Materials, 142(1-2), 68-76.https://doi.org/10.1016/j.jhazmat.2006.07.058.

Das, N. and Charumathi, D. (2012) Remediation of synthetic dyes from wastewater using yeast-an overview, Indian Journal of Biotechnology., 11, 369-380.

Nandi, B. K., Goswami, A., and Purkait, M. K. (2009). Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Applied Clay Science, 42(3-4), 583-590.https://doi.org/10.1016/j.clay.2008.03.015.

Argun, M.E., Dursun, S., Karatas, M. and Guru, M. (2008) Activation of pine cone using fenton oxidation for Cd(II) and Pb(II) removal, Bioresource Technology., 99(18), 8691-8698.https://doi.org/10.1016/j.biortech.2008.04.014.

Kannan, R.R., Rajasimman, M., Rajamohan, N. and Sivapraash, B. (2010) Brown marine algae Turbinariaconoides as biosorbent for Malachite green removal: equilibrium and kinetic modelling, Frontiers of Environmental Science and Engineering., 4(1), 116-122.https://doi.org/10.1007/s11783-010-0006-7.

Saltali, K., Sari, A. and Adin, M. (2007) Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality, Journal of Hazardous Materials., 141, 258-263.https://doi.org/10.1016/j.jhazmat.2006.06.124.

Bazrafshan, E., Zarei, A.A., Nadi, H. and Zazouli, M.A. (2014) Adsorptive removal of methyl orange and reactive red 198 dyes by Moringa peregrina ash, Indian Journal of Chemical Technology., 21, 105-113.

Gupta, V.K., Bhushan, R., Nayak, A., Singh, P. and Bhushan, B. (2014) Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions, Bioremediation Journal., 18, 3179-3191. https://doi.org/10.1080/10889868.2014.918574.

Umpuch, C. and Sakaew, S. (2013) Removal of methyl orange from aqueous solutions by adsorption using chitosan intercalated montmorillonite, Songklanakarin Journal of Science and Technology., 35(4), 451-459.

Bulgariu, L. and Bulgariu, D. (2014) Enhancing biosorption characteristics of marine green algae (Ulvalactuca) for heavy metals removal by alkaline treatment, Journal of Bioprocessing and Biotechniques., 4, 1-10. http://dx.doi.org/10.4172/2155-9821.1000146.

Kwak, H.W., Kim, M.K., Lee, J.Y., Yun, H., Kim, M.H. and Park, Y.H. (2015) Preparation of bead type biosorbent from water soluble Spirulina platensis extracts for chromium (VI) removal, Algal Research., 7, 92-99. https://doi.org/10.1016/j.algal.2014.12.006.

Rachna, P. and Sumathi, S. (2008) Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus, Bioresource Technology., 99(1), 51-58.https://doi.org/10.1016/j.biortech.2006.12.003.

Hosseini, S., Khan, M.A., Malekbala, M.R., Thomas, W.C. and Choong, S.Y. (2011) Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: adsorption and desorption studies, Chemical Engineering Journal., 171, 1124-1131.https://doi.org/10.1016/j.cej.2011.05.010.

Bagchi, M. and Ray, L. (2015) Adsorption behavior of reactive blue 4, a tri-azine dye on dry cells of Rhizopus oryzae in a batch system, Chemical Speciation and Bioavailability., 27(3), 112-120. https://doi.org/10.1080/09542299.2015.1088802.

Aksu, Z. and Donmez, G. (2003) A comparative study on the biosorption characteristics of some yeasts for remazol blue reactive dye, Chemosphere., 50, 1075-1083.https://doi.org/10.1016/S0045-6535(02)00623-9.

Bhatt, N., Patel, K.C., Keharia, H. and Madamwar D. (2005) Decolourization of diazo-dye reactive blue 172 by Pseudomonas aeruginosa NBAR12, Journal of Basic Microbiology., 45, 407-418

Omar, H., El-Gendy, A. and Al-Ahmary, K. (2018) Bioremoval of toxic dye by using different marine macroalgae, Turkish Journal of Botany., 42, 15-27. https://doi.org/10.3906/bot-1703-4.

Jayaraj, R., Mohan, M.C., Prasath, P.M.D and Khan, T.H. (2011) Malachite Green dye removal using the seaweed Enteromorpha, E-Journal of Chemistry., 8(2), 649-656. https://doi.org/10.1155/2011/141305.

Kalyani, D.C., Patil, P.S., Jadhav, J.P. and Govindwar, S.P. (2008) Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp. SUK1, Bioresource Technology., 8(99), 4635-4641. https://doi.org/10.1016/j.biortech.2007.06.058.

Mishra, V. and Pandey, S.D. (2002) Effect of distillery effluent and leachates of industrial sludge on the germination of black gram (Cicer arietinum), Pollution Research., 21(4), 461-467.

Yu, X.Z., Feng, Y.X. and Yue, D.M. (2015) Phytotoxicity of methylene blue to rice seedlings, Global Journal of Environmental Science and Management., 1(3), 199-204.

Abdul Baki, A.S. and Anderson, J.O. (1973) Vigour determination in soybean seed by multiple criteria, Crop Science., 13, 630-633.

Additional Files

Published

2023-07-14