Electric Elegance: Enhancing Cotton Fabric with Conducting Polypyrrole for Gas Sensing Applications


  • Vinod Shankar More Mumbai University
  • B. K. Sakhare
  • R. P. Tandel
  • G. G. Padhye
  • T. N. Ghorude




Gas Sensor, Conducting Polymer, NO2 gas, Polypyrrole, TLV


 This work is carried out to study the indigenously developed conducting polymer-based gas sensor for NO2 detection. The gas sensor is fabricated using conducting polymer such as Polypyrrole (PPy) as the active layer on the cotton fabric surface. The effects of washing on the composition and structure of samples were investigated through the application of XRD and FTIR spectroscopy. XRD analysis revealed notable changes in crystal structure. FTIR analysis provided insights into the molecular bonds present, highlighting variations in the functional groups before and after washing. We evaluated the electrical conductivities of samples before and after washing. The key findings shed light on the effects of washing on the chemical structure of gas-sensing materials, which is critical for maintaining sensor performance. This paper discusses the gas sensing mechanism and configuration of the sensor with a threshold limit value (TLV)  of 25 ppm, enabling detection at low ppm concentrations.

Author Biographies

B. K. Sakhare

Head of Department, Department of Physics, Sonopant Dandekar College, Palghar, Maharashtra, India

R. P. Tandel

Department of Physics, Sonopant Dandekar College, Palghar, Maharashtra, India

G. G. Padhye

Head of Department, Department of Physics, Thakur College of Science and Commerce, Kandivali, Mumbai, Maharashtra, India

T. N. Ghorude

Head of Department, Department of Physics, N. B. Mehta Science College, Bordi, Dahanu, Maharshtra, India


A. M. Grancarić et al., “Conductive polymers for smart textile applications,” J. Ind. Text., vol. 48, no. 3, pp. 612–642, Sep. 2018, doi: 10.1177/1528083717699368.

D. Hao, B. Xu, and Z. Cai, “Polypyrrole coated knitted fabric for robust wearable sensor and heater,” J. Mater. Sci. Mater. Electron., vol. 29, no. 11, pp. 9218–9226, Jun. 2018, doi: 10.1007/s10854-018-8950-2.

Y. Liu, X. Zhao, and X. Tuo, “Preparation of polypyrrole coated cotton conductive fabrics,” J. Text. Inst., vol. 108, no. 5, pp. 829–834, May 2017, doi: 10.1080/00405000.2016.1193981.

R. Kumar, S. Singh, and B. C. Yadav, “Conducting Polymers: Synthesis, Properties and Applications,” Int. Adv. Res. J. Sci. Eng. Technol., vol. 2, no. 11, pp. 110–124, Nov. 2015, doi: 10.17148/IARJSET.2015.21123.

Chen, Li, Qiao, and Lu, “Preparing Polypyrrole-Coated Stretchable Textile via Low-Temperature Interfacial Polymerization for Highly Sensitive Strain Sensor,” Micromachines, vol. 10, no. 11, p. 788, Nov. 2019, doi: 10.3390/mi10110788.

M. Rajabian Monfared, H. Tavanai, A. Abdolmaleki, M. Morshed, and A. Shahin Shamsabadi, “Fabrication of polypyrrole nanoparticles through electrospraying,” Mater. Res. Express, vol. 6, no. 9, p. 0950c2, Aug. 2019, doi: 10.1088/2053-1591/ab3551.

M. O. Ansari, S. A. Ansari, M. H. Cho, S. P. Ansari, M. S. Abdel-wahab, and A. Alshahrie, “Conducting Polymer Nanocomposites as Gas Sensors,” in Cellulose-Based Superabsorbent Hydrogels, Md. I. H. Mondal, Ed., in Polymers and Polymeric Composites: A Reference Series. , Cham: Springer International Publishing, 2019, pp. 1–30. doi: 10.1007/978-3-319-92067-2_25-1.

V. S. More, T. N. Ghorude, S. N. Save, B. K. Sakhare, and R. P. Tandel, “Quantification of Fe (II) Ions in the Synthesis of Polypyrrole by Spectrophotometric Detection,” Int. J. Sci. Res. IJSR, vol. 12, no. 4, pp. 1812–1816, Apr. 2023, doi: 10.21275/SR23428115835.

P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications. Boston, MA: Springer US, 1999. doi: 10.1007/978-1-4615-5245-1.

D. Kincal, A. Kumar, A. D. Child, and J. R. Reynolds, “Conductivity switching in polypyrrole-coated textile fabrics as gas sensors,” Synth. Met., vol. 92, no. 1, pp. 53–56, Jan. 1998, doi: 10.1016/S0379-6779(98)80022-2.

S. Mikhail, S. Irina, and S. Jaroslav, “One-dimensional Nanostructures of Conducting Polypyrrole: Preparation and Properties,” in 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia: IEEE, Oct. 2019, pp. 207–210. doi: 10.1109/EExPolytech.2019.8906839.

S. Maity and A. Chatterjee, “Textile/Polypyrrole Composites for Sensory Applications,” J. Compos., vol. 2015, pp. 1–6, Oct. 2015, doi: 10.1155/2015/120516.

N. German, A. Ramanavicius, and A. Ramanaviciene, “Amperometric Glucose Biosensor Based on Electrochemically Deposited Gold Nanoparticles Covered by Polypyrrole,” Electroanalysis, vol. 29, no. 5, pp. 1267–1277, May 2017, doi: 10.1002/elan.201600680.

J. Xu et al., “Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template,” Cellulose, vol. 22, no. 2, pp. 1355–1363, Apr. 2015, doi: 10.1007/s10570-015-0546-x.

A. F. Pérez-Torres, M. González-Hernández, P. Ortiz, and M. T. Cortés, “Statistical Study of the Influence of Electrosynthesis Conditions on the Capacitance of Polypyrrole,” ACS Omega, vol. 7, no. 18, pp. 15580–15595, May 2022, doi: 10.1021/acsomega.1c06843.

A. M. Alwan, H. R. Abed, and A. A. Yousif, “Effect of the Deposition Temperature on Ammonia Gas Sensing Based on SnO2/Porous Silicon,” Plasmonics, vol. 16, no. 2, pp. 501–509, Apr. 2021, doi: 10.1007/s11468-020-01300-w.

S. Dey and A. Kumar Kar, “Morphological and Optical Properties of Polypyrrole Nanoparticles Synthesized by Variation of Monomer to Oxidant Ratio,” Mater. Today Proc., vol. 18, pp. 1072–1076, 2019, doi: 10.1016/j.matpr.2019.06.566.

P. Mrunalini, R. Waghulade, and Y. Toda, “Synthesis and Characterization of Polypyrrole (PPy) by In-situ Polymerization Technique,” J. Adv. Chem. Sci., vol. 6, no. 2, pp. 686–688, Sep. 2020, doi: 10.30799/jacs.224.20060203.

M. A. Martins, E. M. Teixeira, A. C. Corrêa, M. Ferreira, and L. H. C. Mattoso, “Extraction and characterization of cellulose whiskers from commercial cotton fibers,” J. Mater. Sci., vol. 46, no. 24, pp. 7858–7864, Dec. 2011, doi: 10.1007/s10853-011-5767-2.

A. Jain et al., “Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations,” Heliyon, vol. 9, no. 7, p. e17611, Jul. 2023, doi: 10.1016/j.heliyon.2023.e17611.

F. Khadem, M. Pishvaei, M. Salami‐Kalajahi, and F. Najafi, “Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization,” J. Appl. Polym. Sci., vol. 134, no. 15, p. app.44697, Apr. 2017, doi: 10.1002/app.44697.

T. K. Vishnuvardhan, V. R. Kulkarni, C. Basavaraja, and S. C. Raghavendra, “Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites,” Bull. Mater. Sci., vol. 29, no. 1, pp. 77–83, Feb. 2006, doi: 10.1007/BF02709360.

J. John and S. Jayalekshmi, “Polypyrrole with appreciable solubility, crystalline order and electrical conductivity synthesized using various dopants appropriate for device applications,” Polymer Bulletin, vol. 80, no. 6, pp. 6099–6116, 2022. doi:10.1007/s00289-022-04354-4

Additional Files