Vol. 23 No. 2 (2024): Mapana Journal of Sciences
Research Articles

Temperature Modulated Genotoxicity in Coelomocytes of Ecologically Different Earthworm Species Exposed to Sub-lethal Doses of Zinc and Hexavalent Chromium:

Latha V
Maharani Cluster University, Bengaluru
Mahaboob Basha P
Department of Zoology, Bangalore University, Bengaluru-560 056, INDIA.

Published 2024-07-15

Keywords

  • Temperature,
  • Heavy metals,
  • Genotoxicity,
  • DNA strand breaks,
  • Exacerbation in toxicity

Abstract

Ecotoxicology is concerned with the possible long-term impacts of environmental stresses that alter organisms at the genetic level. Earthworm coelomocytes are sensitive environmental stress markers often employed in genotoxicity assessments. In this study, DNA damage was studied in coelomocytes of two different earthworm species, Eudrilus eugeniae, and Lampito mauritii, upon exposure to Zn2+ and Cr6+ spiked soils at variable temperatures viz., 18℃ (Cold), 24℃ (Control), 28℃ (Warm) to measure modulatory actions of temperature stress. The results of the study infer a clear species-specific response to combined toxicity. Hence, comet assay representing genotoxicity in coelomocytes is the warning signal of temperature and metal stress in earthworms. Therefore, temperature should be considered as an important factor in toxicity testing, as it indicates variations in local conditions that could affect the efficacy of heavy metal toxicity in earthworms of different ecological habitats.

References

  1. T.Jager, Roel, E. A. Hogendoorn, and L. de, “Elucidating the Routes of Exposure for Organic Chemicals in the Earthworm, Eisenia andrei (Oligochaeta),” vol. 37, no. 15, pp. 3399–3404, Aug. 2003, doi: https://doi.org/10.1021/es0340578.
  2. A.Demon and H. Eijsackers, “The effects of lindane and azinphosmethyl on survival time of soil animals, under extreme or fluctuating temperature and moisture conditions,” Zeitschrift für Angewandte Entomologie, vol. 100, no. 1–5, pp. 504–510, Jan. 1985, doi: https://doi.org/10.1111/j.1439-0418.1985.tb02812.x.
  3. P.M. Basha and V. Latha, “Evaluation of sublethal toxicity of zinc and chromium in Eudrilus eugeniae using biochemical and reproductive parameters,” Ecotoxicology, vol. 25, no. 4, pp. 802–813, Feb. 2016, doi: https://doi.org/10.1007/s10646-016-1637-7.
  4. V.Latha and P. Basha, “Extent of Heavy Metal Accumulation in Sewage Irrigated Soils and Their Impact on Distribution of Earthworm Communities: Linking Chromium and Zinc Toxicity on Growth and Reproduction in Selected Earthworm Species.,” Current World Environment, vol. 11, no. 1, pp. 279–290, Apr. 2016, doi: https://doi.org/10.12944/cwe.11.1.34.
  5. P.Mussali-Galante, E. Tovar-Sánchez and T. Fortoul. Cell cycle, P53 and metals. Metals and Toxicological Implications in Health, 9-13, 2007.
  6. G.Frenzilli, M. Nigro, and B. P. Lyons, “The Comet assay for the evaluation of genotoxic impact in aquatic environments,” Mutation Research, vol. 681, no. 1, pp. 80–92, 2009, doi: https://doi.org/10.1016/j.mrrev.2008.03.001.
  7. G.I. V. Klobučar, M. Pavlica, R. Erben, and D. Papeš, “Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments,” Aquatic Toxicology, vol. 64, no. 1, pp. 15–23, Jun. 2003, doi: https://doi.org/10.1016/s0166-445x(03)00009-2.
  8. L.R. Shugart (2000). DNA damage as a biomarker of exposure. Ecotoxicology, 9(5), 329-340.
  9. K.T. Semple and F.L. Martin “Aporrectodea longa (Annelida, Lumbricidae): A Suitable Earthworm Model for Genotoxicity Evaluation in the Environment.” In Ecotoxicology and Genotoxicology 59-75, (2017).
  10. E.L. Cooper, E. Kauschke, and A. Cossarizza, “Digging for innate immunity since Darwin and Metchnikoff,” BioEssays, vol. 24, no. 4, pp. 319–333, Mar. 2002, doi: https://doi.org/10.1002/bies.10077.
  11. P.Engelmann, L. Molnar, L. Palinkas, E. L. Cooper, and P. Nemeth, “Earthworm leukocyte populations specifically harbor lysosomal enzymes that may respond to bacterial challenge,” Cell and Tissue Research, vol. 316, no. 3, pp. 391–401, Jun. 2004, doi: https://doi.org/10.1007/s00441-004-0874-x.
  12. N.Xiao, B. Jing, F. Ge, and X. Liu, “The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions,” Chemosphere, vol. 62, no. 8, pp. 1366–1373, Mar. 2006, doi: https://doi.org/10.1016/j.chemosphere.2005.07.043.
  13. J.Wang, J. Wang, G. Wang, L. Zhu, and J. Wang, “DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida,” Chemosphere, vol. 144, pp. 510–517, Feb. 2016, doi: https://doi.org/10.1016/j.chemosphere.2015.09.004.
  14. İ.H. Ciğerci, M. M. Ali, Ş. Y. Kaygısız, B. Kaya, and R. Liman, “Genotoxic Assessment of Different Sizes of Iron Oxide Nanoparticles and Ionic Iron in Earthworm (Eisenia hortensis) Coelomocytes by Comet Assay and Micronucleus Test,” Bulletin of Environmental Contamination and Toxicology, vol. 101, no. 1, pp. 105–109, May 2018, doi: https://doi.org/10.1007/s00128-018-2364-y.
  15. S.I. Sforzini, L. Saggese, A. Oliveri, C. Viarengo and C. Bolognesi. "Use of the Comet and micronucleus assays for in vivo genotoxicity assessment in the coelomocytes of the earthworm Eisenia andrei." Comparative Biochemistry and Physiology, Part A 157 (2010): S13. 157:613.
  16. K.Sowmithra, N. J. Shetty, S. K. Jha, and R.C. Chaubey, “Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay),” Mutation research. Genetic toxicology and environmental mutagenesis, vol. 794, pp. 52–56, Dec. 2015, doi: https://doi.org/10.1016/j.mrgentox.2015.10.001.
  17. K.Lock and C. R. Janssen, “Ecotoxicity of Chromium (III) to Eisenia fetida, Enchytraeus albidus, and Folsomia candida,” Ecotoxicology and Environmental Safety, vol. 51, no. 3, pp. 203–205, Mar. 2002, doi: https://doi.org/10.1006/eesa.2001.2122.
  18. S.A. Reinecke and A. J. Reinecke, “The Comet Assay as Biomarker of Heavy Metal Genotoxicity in Earthworms,” Archives of Environmental Contamination and Toxicology, vol. 46, no. 2, pp. 208–215, Feb. 2004, doi: https://doi.org/10.1007/s00244-003-2253-0.
  19. W.D. Di Marzio, M. E. Saenz, S. Lemière, and P. Vasseur, “Improved single-cell gel electrophoresis assay for detecting DNA damage inEisenia foetida,” Environmental and Molecular Mutagenesis, vol. 46, no. 4, pp. 246–252, 2005, doi: https://doi.org/10.1002/em.20153.
  20. R.S. Manerikar, A. A. Apte, and V. S. Ghole, “In vitro and in vivo genotoxicity assessment of Cr(VI) using comet assay in earthworm coelomocytes,” Environmental Toxicology and Pharmacology, vol. 25, no. 1, pp. 63–68, Jan. 2008, doi: https://doi.org/10.1016/j.etap.2007.08.009.
  21. K.Ramadass, T. Palanisami, E. Smith, S. Mayilswami, M. Megharaj, and R. Naidu, “Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants,” Archives of Environmental Contamination and Toxicology, vol. 71, no. 4, pp. 561–571, Oct. 2016, doi: https://doi.org/10.1007/s00244-016-0318-0.
  22. E.B. Schalscha, M. Morales, I. Vergara, and A. C. Chang, “Chemical fractionation of heavy metals in wastewater-affected soils,” J. Water Pollut. Control Fed.; (United States), Feb. 1982.
  23. OECD (1984), Test No. 207: Earthworm, Acute Toxicity Tests, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264070042-en.
  24. Ducros V (1992) Chromium metabolism. Biol Trace Elem Res 32(1):65-77.
  25. R.Shrivastava, R. K. Upreti, P. K. Seth and U. C. Chaturvedi “Effects of chromium on the immune system” FEMS immunology and medical microbiology, 34(1), 1–7. https://doi.org/10.1111/j.1574-695X.2002.tb00596.
  26. A.Shanker, C. Cervantes, H. Lozatavera, and S. Avudainayagam, “Chromium toxicity in plants,” Environment International, vol. 31, no. 5, pp. 739–753, Jul. 2005, doi: https://doi.org/10.1016/j.envint.2005.02.003.
  27. David John Finney, Probit Analysis. Cambridge University Press, 1971.
  28. G.S. Eyambe, A. J. Goven, L. C. Fitzpatrick, B. J. Venables, and E. L. Cooper, “A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies,” Laboratory Animals, vol. 25, no. 1, pp. 61–67, Jan. 1991, doi: https://doi.org/10.1258/002367791780808095.
  29. N.P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, Mar. 1988, doi: https://doi.org/10.1016/0014-4827(88)90265-0.
  30. E.Rojas, M. C. Lopez, and M. Valverde, “Single cell gel electrophoresis assay: methodology and applications,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 722, no. 1–2, pp. 225–254, Feb. 1999, doi: https://doi.org/10.1016/s0378-4347(98)00313-2.
  31. P.Hebert and M. Luiker, “Genetic effects of contaminant exposure — towards an assessment of impacts on animal populations,” Science of The Total Environment, vol. 191, no. 1–2, pp. 23–58, Nov. 1996, doi: https://doi.org/10.1016/0048-9697(96)05169-8.
  32. L.Shugart and C. Theodorakis, “Environmental genotoxicity: probing the underlying mechanisms.,” Environmental Health Perspectives, vol. 102, no. suppl 12, pp. 13–17, Dec. 1994, doi: https://doi.org/10.1289/ehp.94102s1213.
  33. A.R. Collins, “The comet assay for DNA damage and repair: principles, applications, and limitations,” Molecular biotechnology, vol. 26, no. 3, pp. 249–61, 2004, doi: https://doi.org/10.1385/MB:26:3:249.
  34. M.Asmuß, L. H. F. Mullenders, and A. Hartwig, “Interference by toxic metal compounds with isolated zinc finger DNA repair proteins,” Toxicology Letters, vol. 112–113, pp. 227–231, Mar. 2000, doi: https://doi.org/10.1016/s0378-4274(99)00273-8.
  35. S.J. Connelly, R. E. Moeller, G. Sanchez, and D. L. Mitchell, “Temperature Effects on Survival and DNA Repair in Four Freshwater CladoceranDaphniaSpecies Exposed to UV Radiation,” Photochemistry and Photobiology, vol. 85, no. 1, pp. 144–152, Jan. 2009, doi: https://doi.org/10.1111/j.1751-1097.2008.00408.x.
  36. P.Voua Otomo, S. A. Reinecke, and A. J. Reinecke, “Combined effects of metal contamination and temperature on the potwormEnchytraeus doerjesi(Oligochaeta),” Journal of Applied Toxicology, vol. 33, no. 12, pp. 1520–1524, Oct. 2012, doi: https://doi.org/10.1002/jat.2820.
  37. R.Codd, C. T. Dillon, A. Levina, and P. A. Lay, “Studies on the genotoxicity of chromium: from the test tube to the cell,” Coordination Chemistry Reviews, vol. 216–217, pp. 537–582, Jun. 2001, doi: https://doi.org/10.1016/s0010-8545(00)00408-2.
  38. X.Shi, Z. Dong, C. Huang, C. et al. The role of hydroxyl radical as a messenger in the activation of nuclear transcription factor NF-κB. Mol Cell Biochem 194, 63–70 (1999). https://doi.org/10.1023/A:1006904904514.
  39. K.Liu et al., “On the mechanism of Cr (VI)-induced carcinogenesis: dose dependence of uptake and cellular responses.,” Molecular and cellular biochemistry, vol. 222, no. 1/2, pp. 221–229, Jan. 2001, doi: https://doi.org/10.1023/a:1017938918686.
  40. K.S. Kasprzak, “Possible Role of Oxidative Damage in Metal-Induced Carcinogenesis,” Cancer Investigation, vol. 13, no. 4, pp. 411–430, Jan. 1995, doi: https://doi.org/10.3109/07357909509031921.
  41. V.Gallo, A. Khan, C. Gonzales, D.H. Phillips, B. Schoket, E. Györffy, L. Anna, K. Kovács, P. Møller, S.Loft, S. Kyrtopoulos, G. Matullo and P. Vineis (2008). “Validation of biomarkers for the study of environmental carcinogens: a review.” Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals, 13(5), 505–534. https://doi.org/10.1080/13547500802054611.
  42. L.Ehrenberg, F. Granath, and M. Törnqvist, “Macromolecule adducts as biomarkers of exposure to environmental mutagens in human populations.,” Environmental Health Perspectives, vol. 104, no. suppl 3, pp. 423–428, May 1996, doi: https://doi.org/10.1289/ehp.96104s3423.
  43. A.Buschini, P. Carboni, A. Martino, P. Poli, and C. Rossi, “Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 537, no. 1, pp. 81–92, May 2003, doi: https://doi.org/10.1016/S1383-5718(03)00050-0.
  44. B Anitha, N. Chandra, P. M. Gopinath, and G Durairaj, “Genotoxicity evaluation of heat shock in gold fish (Carassius auratus),” Mutation research. Genetic toxicology and environmental mutagenesis, vol. 469, no. 1, pp. 1–8, Aug. 2000, doi: https://doi.org/10.1016/s1383-5718(00)00029-2.
  45. D.J. Spurgeon and S. P. Hopkin, “The effects of metal contamination on earthworm populations around a smelting works: quantifying species effects,” Applied Soil Ecology, vol. 4, no. 2, pp. 147–160, Sep. 1996, doi: https://doi.org/10.1016/0929-1393(96)00109-6.
  46. J.E. Morgan, C.G. Norey, A. J. Morgan, and J. Kay, “A comparison of the cadmium-binding proteins isolated from the posterior alimentary canal of the earthworms Dendrodrilus rubidus and Lumbricus rubellus,” Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, vol. 92, no. 1, pp. 15–21, Jan. 1989, doi: https://doi.org/10.1016/0742-8413(89)90195-3.
  47. S.J. Martin, D. R. Green, and T. G. Cotter, “Dicing with death: dissecting the components of the apoptosis machinery,” Trends in Biochemical Sciences, vol. 19, no. 1, pp. 26–30, Jan. 1994, doi: https://doi.org/10.1016/0968-0004(94)90170-8.