Enhanced Nickel Removal from Aqueous Solutions using Chemically Modified Tabeubea Rosea Leaves Powder as Biosorbent


  • Pranali Choudhari Rashtrasant Tukadoji Maharaj Nagpur University,Nagpur
  • Sarang S. Dhote Shri Shivaji Education Society Amravati's Science College,Nagpur
  • Mamata R. Lanjewar




Adsorption, Adsorption isotherm, Adsorption kinetics, Ni (II), Tabeubea Rosea leaves, ZnCl2


The current study explored batch testing to adsorb Ni(II) onto Tabeubea rosea leaves activated by zinc chloride (TRZCAC), assessing parameters like contact time, pH, adsorbent amount, initial metal ion concentration, and temperature. Characterization via BET, FTIR, SEM, EDX, and TGA analyses revealed TRZCAC's surface area (693.113 m2/g) and morphology. Optimal conditions were determined as pH 6, 0.5g adsorbent dose, 120 min adsorption time, and 50 mg L-1 Ni(II) concentration, yielding a 91.29% removal and 22.47 mg/g adsorption capacity. Pseudo-second-order kinetics described adsorption, which was spontaneous and exothermic. Freundlich isotherm and second-order kinetics best fit the data. The findings suggest TRZCAC as a potential eco-friendly biosorbent for Ni(II) removal from wastewater, owing to its effective adsorption capacity and favorable operating conditions.


Ahmad, A., Al-Swaidan, H. M., & Alghamdi, A. H. (2015). Production of Activated Carbon from Raw Date Palm Fronds by ZnCl2 Activation Production of Activated Carbon from Raw Date Palm Fronds by ZnCl 2 Activation. In J.Chem.Soc.Pak (Vol. 37, Issue 06).

Ahmaruzzaman, M., & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial and Engineering Chemistry Research, 50(24), 13589–13613. https://doi.org/10.1021/ie201477c

Akinhanmi, T. F., Ofudje, E. A., Adeogun, A. I., Aina, P., & Joseph, I. M. (2020). Orange peel as low-cost adsorbent in the elimination of Cd(II) ion: kinetics, isotherm, thermodynamic and optimization evaluations. Bioresources and Bioprocessing, 7(1). https://doi.org/10.1186/s40643-020-00320-y

Al-Qodah, Z. (2006). Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination, 196(1–3), 164–176. https://doi.org/10.1016/j.desal.2005.12.012

Alhogbi, B. G. (2017). Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions. Sustainable Chemistry and Pharmacy, 6, 21–25. https://doi.org/10.1016/j.scp.2017.06.004

Amode, J. O., Santos, J. H., Md. Alam, Z., Mirza, A. H., & Mei, C. C. (2016). Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: equilibrium and kinetics studies. International Journal of Industrial Chemistry, 7(3), 333–345. https://doi.org/10.1007/s40090-016-0085-9

Bellahsen, N., Varga, G., Halyag, N., Kertész, S., Tombácz, E., & Hodúr, C. (2021). Pomegranate peel as a new low-cost adsorbent for ammonium removal. International Journal of Environmental Science and Technology, 18(3), 711–722. https://doi.org/10.1007/s13762-020-02863-1

Bello, O. S., Adegoke, K. A., & Akinyunni, O. O. (2017). Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Applied Water Science, 7(3), 1295–1305. https://doi.org/10.1007/s13201-015-0345-4

Biswas, B. K., Inoue, K., Ghimire, K. N., Kawakita, H., Ohto, K., & Harada, H. (2008). Effective removal of arsenic with lanthanum(III)- and cerium(III)-loaded orange waste gels. Separation Science and Technology, 43(8), 2144–2165. https://doi.org/10.1080/01496390802064075

Bulgariu, D., & Bulgariu, L. (2012). Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresource Technology, 103(1), 489–493. https://doi.org/10.1016/j.biortech.2011.10.016

Chand, R., Watari, T., Inoue, K., Torikai, T., & Yada, M. (2009). Evaluation of wheat straw and barley straw carbon for Cr(VI) adsorption. Separation and Purification Technology, 65(3), 331–336. https://doi.org/10.1016/j.seppur.2008.11.002

Das, A., Bar, N., & Das, S. K. (2020). Pb(II) adsorption from aqueous solution by nutshells, green adsorbent: Adsorption studies, regeneration studies, scale-up design, its effect on biological indicator and MLR modeling. Journal of Colloid and Interface Science, 580, 245–255. https://doi.org/10.1016/j.jcis.2020.07.017

El-Azazy, M., El-Shafie, A. S., Issa, A. A., Al-Sulaiti, M., Al-Yafie, J., Shomar, B., & Al-Saad, K. (2019). Potato Peels as an Adsorbent for Heavy Metals from Aqueous Solutions: Eco-Structuring of a Green Adsorbent Operating Plackett-Burman Design. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/4926240

Gebreslassie, Y. T. (2020). Equilibrium, Kinetics, and Thermodynamic Studies of Malachite Green Adsorption onto Fig (Ficus cartia) Leaves. Journal of Analytical Methods in Chemistry, 2020. https://doi.org/10.1155/2020/7384675

Gupta, R., & Mohapatra, H. (2003). Microbial biomass: An economical alternative for removal of heavy metals from waste water. Indian Journal of Experimental Biology, 41(9), 945–966.

Hariharan, A., Harini, V., Sandhya, S., & Rangabhashiyam, S. (2023). Waste Musa acuminata residue as a potential biosorbent for the removal of hexavalent chromium from synthetic wastewater. Biomass Conversion and Biorefinery, 13(2), 1297–1310. https://doi.org/10.1007/s13399-020-01173-3

Hasija, V., Raizada, P., Singh, P., Verma, N., Khan, A. A. P., Singh, A., Selvasembian, R., Kim, S. Y., Hussain, C. M., Nguyen, V. H., & Le, Q. Van. (2021). Progress on the photocatalytic reduction of hexavalent Cr (VI) using engineered graphitic carbon nitride. Process Safety and Environmental Protection, 152, 663–678. https://doi.org/10.1016/j.psep.2021.06.042

Kahu, S. S., Shekhawat, A., Saravanan, D., & Jugade, R. M. (2016). Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents. Carbohydrate Polymers, 146, 264–273. https://doi.org/10.1016/j.carbpol.2016.03.041

Kumar, A., Wang, L., Dzenis, Y. A., Jones, D. D., & Hanna, M. A. (2008). Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy, 32(5), 460–467. https://doi.org/10.1016/j.biombioe.2007.11.004

Kumar, S., Bhanjana, G., Dilbaghi, N., & Umar, A. (2014). Multi walled carbon nanotubes as sorbent for removal of crystal violet. Journal of Nanoscience and Nanotechnology, 14(9), 7054–7059. https://doi.org/10.1166/jnn.2014.9236

Li, Z., Teng, T. T., Alkarkhi, A. F. M., Rafatullah, M., & Low, L. W. (2013). Chemical modification of imperata cylindrica leaf powder for heavy metal ion adsorption. Water, Air, and Soil Pollution, 224(4). https://doi.org/10.1007/s11270-013-1505-5

Long, J., Huang, X., Fan, X., Peng, Y., & Xia, J. (2018). Effective adsorption of nickel (II) with Ulva lactuca dried biomass: Isotherms, kinetics and mechanisms. Water Science and Technology, 78(1), 156–164. https://doi.org/10.2166/wst.2018.253

Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NiO. Industrial and Engineering Chemistry Research, 50(17), 10017–10023. https://doi.org/10.1021/ie200271d

Pavlić, B., Naffati, A., Hojan, T., Vladić, J., Zeković, Z., & Vidović, S. (2017). Microwave-assisted extraction of wild apple fruit dust—production of polyphenol-rich extracts from filter tea factory by-products. Journal of Food Process Engineering, 40(4), 1–11. https://doi.org/10.1111/jfpe.12508

Raval, N. P., Shah, P. U., & Shah, N. K. (2016). Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management, 179, 1–20. https://doi.org/10.1016/j.jenvman.2016.04.045

Rengaraj, S., Joo, C. K., Kim, Y., & Yi, J. (2003). Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of Hazardous Materials, 102(2–3), 257–275. https://doi.org/10.1016/S0304-3894(03)00209-7

Sari, A., Tuzen, M., Citak, D., & Soylak, M. (2007). Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 149(2), 283–291. https://doi.org/10.1016/j.jhazmat.2007.03.078

Sharma, A., & Bhattacharyya, K. G. (2005). Adsorption of chromium (VI) on azadirachta indica (Neem) Leaf Powder. Adsorption. https://doi.org/10.1007/s10450-005-4818-x

Sharma, Y. C., Singh, B., Agrawal, A., & Weng, C. H. (2008). Removal of chromium by riverbed sand from water and wastewater: Effect of important parameters. Journal of Hazardous Materials, 151(2–3), 789–793. https://doi.org/10.1016/j.jhazmat.2007.06.054

Song, C., Wu, S., Cheng, M., Tao, P., Shao, M., & Gao, G. (2014). Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead(ii) from aqueous solutions. Sustainability (Switzerland), 6(1), 86–98. https://doi.org/10.3390/su6010086

Tsuji, M. (2002). SeO32--selective properties of inorganic materials synthesized by the soft chemical process. Solid State Ionics, 151(1–4), 385–392. https://doi.org/10.1016/S0167-2738(02)00544-1

Villaescusa, I., Fiol, N., Martínez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38(4), 992–1002. https://doi.org/10.1016/j.watres.2003.10.040

Vinod, V. T. P., Sashidhar, R. B., & Sreedhar, B. (2010). Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. Journal of Hazardous Materials, 178(1–3), 851–860. https://doi.org/10.1016/j.jhazmat.2010.02.016

Vithalkar, S., Jugade, R. M., & Saravanan, D. (2022). Adsorption of brilliant green dye by used-tea-powder: equilibrium, kinetics and thermodynamics studies. Aqua Water Infrastructure, Ecosystems and Society, 71(10), 1148–1158. https://doi.org/10.2166/aqua.2022.076

Weber, C. T., Foletto, E. L., & Meili, L. (2013). Removal of tannery dye from aqueous solution using papaya seed as an efficient natural biosorbent. Water, Air, and Soil Pollution, 224(2). https://doi.org/10.1007/s11270-012-1427-7

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

Additional Files





Research Articles