Unlocking the Potential of Microalgae: Renewable Biofuel Technologies, Barriers, and Future Directions
Published 2025-07-22
Keywords
- Algal biomass,
- Conventional energy,
- Eco-friendly,
- Fossil fuel,
- Renewable energy
- Sustainability ...More
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Researchers are looking for an alternative source of energy due to the increase in energy demand and environmental pollution caused by fossil fuels. Recent reports said that microalgae are efficient for biofuel production due to their high growth ability, low production cost and potential to grow in severe environments. There are many photosynthetic microalgae that consume CO2 and sunlight for growth in biomass and thus provide a promising source of bioenergy. This review paper presents the recent technologies to produce microalgal biofuel. Besides this, the cultivation and harvesting processes and environmental factors that influence the microalgal biofuel production have also been discussed. This review paper also discusses how to attain carbon neutrality through several biofuel generations and also discusses their applications and limitations in agriculture and the environment. In future, researchers should give attention to identifying better strains of algae that produce good-quality biofuel of a high yield, better than economically feasible algal biofuel. Future research is needed to produce a higher amount of product because in recent days, most of the algae face the uneconomical higher costs. Finally, this review paper gives an exposure to a better biofuel in future.
References
- Abanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M. A., Esmaeilion, F., Assad, M. E. H., Hajilounezhad, T., Jamali, D.H., Hmida, A., Ozgoli, H. A., Safari, S., AlShabi, M., Hani, E. H. B. (2021). A critical review of biogas production and usage with legislations framework across the globe. Int. J. Environ. Sci. Technol., 19(4), 3377-3400. https://doi.org/10.1007/s13762-021-03301-6
- Abdulkhani, A., Alizadeh, P., Hedjazi, S., Hamzeh, Y. (2017). Potential of Soya as a raw material for a whole crop biorefinery. Renewable Sustainable Energy Rev., 75, 1269-1280. https://doi.org/10.1016/j.rser. 2016.10.082
- Abdel-Latif, M. R., El-Ashram, S., Yilmaz, S., Naiel, M. A. E., Abdul Kari, Z., Abdul Hamid, N. K., Dawood, M. A. O., Nowosad, J., & Kucharczyk, D. (2022). The effectiveness of Arthrospira platensis and microalgae in relieving stressful conditions affecting finfish and shellfish species: An overview. Aquaculture Reports, 24, 101135. https://doi.org/10.1016/j.aqrep.2022.101135.
- Ahuja, S. (2015). Food, energy, and water: the chemistry connection. Elsevier, Amsterdam; Boston. https://doi.org/10.1016/B978-0-12-800211-7.00001-6
- Alias, N. H., Ibrahim, M. F., Salleh, S., Jenol, M. A., Aziz, S. A., Phang, L.Y. (2021). In Sustainable Bioeconomy. Biobutanol Production from Agricultural Biomass. Springer, Singapore, pp. 67-84. http://dx.doi.org/10.1007/978-981-15-7321-7_4
- Aron, N. S. M., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H., Nguyen, T. H. P. (2020). Sustainability of the four generations of biofuels-A review. Int. J. Energy Res., 44(12), 9266-9282. https://doi. org/10.1002/er.5557
- Bachmann, R. T., Johnson, A. C., Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: An overview. Int. Biodeterior. Biodegrad., 86, 225-237. https://doi.org/10.1016/j.ibiod.2013.09.011
- Bae, C., Kim, J. (2017). Alternative fuels for internal combustion engines. Proc. Combust. Inst., 36(3), 3389-3413. https://doi.org/10.1016/j.proci. 2016.09.009.
- Balamurugan, S., Li, D. W., Wang, X., & Li, H. Y. (2025). Unleashing the potential of biotechnological strategies for the sustainable production of microalgal polysaccharides. Critical Reviews in Food Science and Nutrition, 1–18. https://doi.org/10.1080/10408398.2025.2475240.
- Becker, W. (2007). Microalgae in Human and Animal Nutrition. A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology (2nd Edn.). (pp. 312-351). Wiley Online. https://doi.org/10.1002/9781118567166.ch25
- Biller, P., Ross, A. B., Skill, S. C., Langton, A. L., Balasundaram, B., Hall, C., Riley, R., Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res., 1(1), 70-76. https://doi.org/10.1016/j.algal.2012.02
- .002.
- Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol., 70(1-3), 313-321. https://doi.org/10.1016/S0168-1656(99)00083-8.
- Borowitzka, M. A. (2005). Culturing microalgae in outdoor ponds. In R. A. Andersen (ed.), Algal Culturing Techniques (pp. 205-218). Elsevier Academic Press.
- Brennan, L., Owende, P. (2010). Biofuels from microalgae-a review of technologies forproduction, processing, and extraction of biofuels and co-products. Renewable Sustainable Energy Rev., 14(2), 557-577. https://doi.org/10.1016/j.rser.2009.10.009
- Chen, G., Shen, Y., Zhang, Q., Yao, M., Zheng, Z., Liu, H. (2013). Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran-diesel, n-butanol-diesel and gasoline–diesel blends. Energy, 54, 333-342. https://doi.org/10.1016/j.energy.2013.02.069
- Chisti, Y., (2007). Biodiesel from microalgae. Biotechnol. Adv., 25(3), 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001.
- Chowdhury, P., Mahi, N. A., Yeassin, R., Chowdhury, N.-U.-R., & Farrok, O. (2025). Biomass to biofuel: Impacts and mitigation of environment- al, health, and socioeconomic challenges. Energy Conversion and Management: X, 25, 100889. https://doi.org/10.1016/j.ecmx.2025.1008 89.
- Condor, B. E., Luna, M. D. G. D., Chang, Y. H., Chen, J. H., Leong, Y. K., Chen, P. T., Chen, C.Y., Lee, D.J., Chang, J. S. (2022). Bioethanol production from microalgae biomass at high-solids loadings. Bioresour. Technol., 363, 128002. https://doi.org/10.1016/j.biortech.2022.128002.
- Constantino, A., Rodrigues, B., Leon, R., Barros, R., Raposo, S. (2021). Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Res., 56, 102329. https://doi.org/10.1016/j.algal.2021.102329.
- Corsini, A., Marchegiani, A., Rispoli, F., Sciulli, F., Venturini, P. (2015). Vegetable oils as fuels in diesel engine, Engine performance and emissions. Energy procedia, 81, 942-949. https://doi.org/10.1016/j.egy pro.2015.12.151.
- Dayananda, C., Sarada, R., Rani, M. U., Shamala, T. R., Gokare, R. (2007). Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy, 31(1), 87-93. https://doi.org/10.1016/j.biombioe.2006.05.001.
- Demirbas, A. A. (2011). Competitive liquid biofuels from biomass. Appl. Energy, 88(1), 17-28. https://doi.org/10.1016/j.apenergy.2010.07.016.
- Dragone, G., Fernandes, B., Vicente, A. A., Teixeira, J. A. (2010). Third generation biofuels from microalgae. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Mendez-Vilas A (ed.), Formatex, pp. 1355-1366.
- Draude, K. M., Kurniawan, C. B., Duff, S. J. B. (2001). Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol., 79(2), 113-120. https://doi.org/10.1016/S0960-8524(01)00055-4.
- El-Araby, R. (2024). Biofuel production: Exploring renewable energy solutions for a greener future. Biotechnology for Biofuels, 17, 129. https://doi.org/10.1186/s13068-024-02571-9
- Eldiehy, K. S. H., Daimary, N., Borah, D., Sarmah, D., Bora, U., Mandal, M., & Deka, D. (2022). Towards biodiesel sustainability: Waste sweet potato leaves as a green heterogeneous catalyst for biodiesel production using microalgal oil and waste cooking oil. Industrial Crops and Products, 187(Part B), 115467. https://doi.org/10.1016/j.indcrop.2022.115467.
- El-Moataaz, S., Ismael, H., & Abo-Rhyem, S. (2019). Assessment of chemical composition of Spirulina platensis and its effect on fasting blood glucose and lipid profile in diabetic rats. Journal of High Institute of Public Health, 49(3), 199–211. https://doi.org/10.21608/jh iph.2019.64463.
- Elshobary, M. E., Zabed, H. M., Qi, X., & others. (2022). Enhancing biomass and lipid productivity of a green microalga Parachlorella kessleri for biodiesel production using rapid mutation of atmospheric and room temperature plasma. Biotechnology for Biofuels, 15, 122. https://doi.org/10.1186/s13068-022-02220-z
- Faungnawakij, K., Suriye, K. (2013). Current Catalytic Processes with Hybrid Materials and Composites for Heterogeneous Catalysis. In S. L. Suib (Ed.), New and Future Developments in Catalysis. Elsevier.
- Ge, S., Pugazhendhi, A., Sekar, M., Xia, C., Elfasakhany, A., Brindhadevi, K., & Whangchai, K. (2022). PM emissions – Assessment of combustion energy transfer with Schizochytrium sp. algal biodiesel and blends in IC engine. Science of The Total Environment, 802, 149750. https://doi.org/10.1016/j.scitotenv.2021.149750.
- Gorjian, S., Fakhraei, O., Gorjian, A., Sharafkhani, A., Aziznejad, A. (2022). Sustainable Food and Agriculture: Employment of Renewable Energy Technologies. Curr. Robot. Rep., 3, 153-163. https://doi.org/10.1007/s4 3154-022-00080-x.
- Gronwald, F., & Wang, L. (2024). Advancing renewable energy: The prospects of hydrothermal liquefaction (HTL) for biomass into bio-oil conversion. International Journal of Environmental Engineering and Education, 6(3), 132–144. https://doi.org/10.55151/ijeedu.v6i3.138.
- Guo, Y., Liu, G., Ning, Y., Li, X., Hu, S., Zhao, J., Qu, Y. (2022). Production of cellulosic ethanol and value-added products from corn fibre. Bioresources and Bioprocessing, 9, 81. https://doi.org/10.1186/s40643-022-00573-9.
- Gupta, N., Koley, A., Saha, A., Hoque, R. R., & Balachandran, S. (2024). Microbial fuel cells: Bifunctionalized approach for wastewater treatment and energy recovery innovation. In S. Ray Chaudhuri (Ed.), Application of microbial technology in wastewater treatment and bioenergy recovery (Chapter 19). Springer. https://doi.org/10.1007/978-981-97-3458-0_19.
- Hajjari, M., Tabatabaei, M., Aghbashlo, M., Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilisation. Renewable Sustainable Energy Rev., 72, 445-464. https://doi.org/10.1016/j.rser.201 7.01.034.
- Ho, S. H., Li, P. J., Liu, C. C., Chang, J. S. (2013). Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol., 145, 142-149. https://doi.org/10.1016/j.biortech.2013.02.119
- Hong, M., Zhukareva, V., Ragaglia, V. V., Wszolek, Z., Reed, L., Miller, B. I., Geschwind, D. H., Bird, T. D., McKeel, D., Goate, A., Morris, J. C., Wilhelmsen, K. C., Schellenberg, G. D., Trojanowski, J. Q., Lee, V. M. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 282(5395), 1914-1917.
- https://www.science.org/doi/abs/10.1126/science.282.5395.1914
- Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J., 54(4), 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
- Hussian, M., Ellatif, A. (2018). The Role of Microalgae in Renewable Energy Production: Challenges and Opportunities. In M. Türkoğlu, U. Önal, A. Ismen (ed.), Marine Ecology (pp. 257-283). Intechopen. http://dx.doi.org/10.5772/intechopen.73573.
- Kaltschmitt, M., Weber, M. (2006). Markets for solid biofuels within the EU-15. Biomass Bioenergy, 30(11), 897-907. https://doi.org/10.1016/j.bi ombioe.2006.06.009.
- Kasai, Y., Takagi, S., Ota, S., Yoshida, H., & Hirai, M. Y. (2024). Development of a CRISPR/Cas9-mediated gene-editing method to isolate a mutant of the unicellular green alga Parachlorella kessleri strain NIES-2152 with improved lipid productivity. Biotechnology for Biofuels and Bioproducts, 17, 36. https://doi.org/10.1186/s13068-024-02484-7
- Kent, M., Welladsen, H. M., Mangott, A., Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One, 10(2), 1-14. https://doi.org/10.1371/journal. pone.0118985
- Khan, M. I., Shin, J.H., Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact., 17(36), 1-21. https://doi.org/10.1186/s12934-018-0879-x.
- Kumar, A., Jamro, I. A., Yan, B., Cheng, Z., Tao, J., Zhou, S., Kumari, L., Li, J., Aborisade, M. A., Oba, B. T., Bhagat, W. A., Laghari, A. A., Chen, G. (2023). Pyrolysis of de-fatted microalgae residue: A study on thermal-kinetics, products’ optimization, and neural network modelling. Fuel, 334, 126752. https://doi.org/10.1016/j.fuel.2022.126752.
- Lackner, K. S. (2009). Chapter 1- Comparative impacts of fossil fuels and alternative energy sources. In R. E. Hester & R. M. Harrison (Eds.), Carbon Capture: Sequestration and Storage (pp. 1-40). The Royal Society of Chemistry.
- Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnol. Bioeng., 101(2), 209-228. https://doi.org/10.1002/bit.22003.
- Li, Y., Kesharwani, R., Sun, Z., Qin, R., Dagli, C., Zhang, M., Wang, D. (2020). Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology. App. Energy, 259, 114235. https://doi.org/10.1016/j.apenergy.2019.114235.
- Malik, K., Capareda, S. C., Kamboj, B. R., Malik, S., Singh, K., Arya, S., & Bishnoi, D. K. (2024). Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources. Fuels, 5(2), 157-175. https://doi.org/10.3390/fuels5020010.
- Malode, S. J., Prabhu, K. K., Mascarenhas, R. J., Shetti, N. P., & Aminabhavi, T. M. (2021). Recent advances and viability in biofuel production. Energy Conversion and Management: X, 10, 100070. https://doi.org/10.1016/j.ecmx.2020.100070.
- Maswanna, T., Lindblad, P., Maneeruttanarungroj, C. (2020). Improved biohydrogen production by immobilized cells of the green algae Tetraspora sp. CU2551 incubated under aerobic condition. J. Appl. Phycol., 32, 2937-2945. https://doi.org/10.1007/s10811-020-02184-3.
- Mata, T. M., Martins, A. A., Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable Sustainable Energy Rev. 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020.
- Meena, R. A. A., Banu, J. R., Kannah, R. Y., Yogalakshmi, K.N., Kumar, G. (2019). Biohythane production from food processing wastes-Challenges and perspectives. Bioresour. Technol., 298, 122449. https://doi.org/10.1016/j.biortech.2019.122449.
- Morais Junior, W. G., Gorgich, M., Corrêa, P. S., Martins, A. A., Mata, T. M., & Caetano, N. S. (2020). Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture, 528, 735562. https://doi.org/10.1016/j.aquaculture.2020.735562.
- Morales-Sánchez, D., Schulze, P. S. C., Kiron, V., & Wijffels, R. H. (2020). Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. Algal Research, 50, 102016. https://doi.org/10.1016/j.algal.2020.102016.
- Muthuraman, V. S., & Kasianantham, N. (2023). Valorization opportunities and adaptability assessment of algae-based biofuels for futuristic sustainability: A review. Process Safety and Environmental Protection, 174, 694–721. https://doi.org/10.1016/j.psep.2023.04.043.
- Norman, J. H. (2001). Nontechnical guide to petroleum geology, exploration, drilling, and production (2nd Ed.). PennWell.
- Obergruber, M., Hönig, V., Procházka, P., Kucˇerová, V., Kotek, M., Boucˇek, J., Marˇík, J. (2021). Physicochemical Properties of Biobutanol as an Advanced Biofuel. Materials, 14, 914. https://doi.org/10.3390/ ma14040914.
- Ollivier, B. & Magot, M. (2005). Petroleum Microbiology. ASM Press.
- Periyasamy, S., Venkatachalam, S., Ramasamy, S., Srinivasan, V. (2009). Production of bio-ethanol from sugar molasses using Saccharomyces cerevisiae. Mod. Appl. Sci., 3(8), 32-37. https://doi.org/10.5539/mas.v 3n8p32.
- Phulara, S. C., Chaurasia, D., Diwan, B., Chaturvedi, P., Gupta, P. (2018). In-situ isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process Biochem., 72, 47-54. https://doi.org/10.1016/j.procbio.2018.06.019.
- Prasad, S., & Ingle, A. P. (2019). Impacts of sustainable biofuels production from biomass. In M. Rai & A. P. Ingle (Eds.), Sustainable bioenergy (pp. 327–346). Elsevier. https://doi.org/10.1016/B978-0-12-817654-2.00012-5.
- Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae - A review. J. Algal Biomass Utln., 3(4), 89-100.
- Rakopoulos, C. D., Dimaratos, A. M., Giakoumis, E. G., Rakopoulos, D. C. (2011). Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends. Appl. Energy, 88(11), 3905-3916. https://doi.org/10.1016/j.apenergy.2011.03.051.
- Rodionova, M. V., Poudyal, R. S., Tiwari, I., Voloshin, R. A., Zharmukhamedov, S. K., Nam, H. G., Zayadan, B. K., Bruce, B. D., Hou, H. J., Allakhverdiev, S. I. (2017). Biofuel production: Challenges and opportunities. Int. J. Hydrogen Energy, 42, 8450-8461. http://dx.doi.org/10.1016/j.ijhydene.2016.11.125.
- Santillan-Angeles, A., Mendoza-Perez, C., Villagrán, E., Garcia, F., & Flores-Velazquez, J. (2025). Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades. Water, 17(5), 746. https://doi.org/10.3390/w17050746.
- Sasaki, K., Tsuge, Y., Sasaki, D., Kawaguchi, H., Sazuka, T., Ogino, C., Kondo, A. (2015). Repeated ethanol production from sweet sorghum juice concentrated by membrane separation. Bioresour. Technol., 186, 351-355. https://doi.org/10.1016/j.biortech.2015.03.127.
- Seghiri, R., Kharbach, M., & Essamri, A. (2019). Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. Journal of Food Quality, 2019, 3707219. https://doi.org/10.1155/2019/3707219.
- Shahriyari, H. A., Nikmanesh, Y., Jalali, S., Tahery, N., Zhiani Fard, A., Hatamzadeh, N., Mohammadi, M. J. (2021). Air pollution and human health risks: Mechanisms and clinical manifestations of cardiovascular and respiratory diseases. Toxin Reviews, 41(2), 606–617. https://doi.org/10.1080/15569543.2021.1887261
- Shahzadi, T., Mehmood, S., Irshad, M., Anwar, Z., Afroz, A., Zeeshan, N., Rashid, U., Sughra, K. (2014). Advances in lignocellulosic biotechnology: A brief review on lignocellulosic biomass and cellulases. Adv. Biosci. Biotechnol., 5(3), 246-251. http://dx.doi.org/10.4236/abb.2014.53031.
- Shuba, E. S., Kifleb, D. (2018). Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renewable Sustainable Energy Rev., 81(1), 743-755. https://doi.org/10.1016/j.rser.2017.08.042.
- Show, P. L., Tang, M. S. Y., Nagarajan, D., Ling, T. C., Ooi, C. W., Chang, J. S. (2017). Holistic Approach to Managing Microalgae for Biofuel Applications. Int. J. Mol. Sci., 18(1), 215. https://doi.org/10.3390%2Fijms18010215.
- Shirazi, H. M., Sabet, J. K., Ghotbi, C. (2017). Biodiesel production from Spirulina microalgae feedstock using direct trans esterification near supercritical methanol condition. Bioresour. Technol., 239, 378-386. https://doi.org/10.1016/j.biortech.2017.04.073.
- Shweta, Capareda, S. C., Kamboj, B. R., Malik, K., Singh, K., Bhisnoi, D. K., & Arya, S. (2024). Biomass Resources and Biofuel Technologies: A Focus on Indian Development. Energies, 17(2), 382. https://doi.org/10.3390/en17020382.
- Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Beisson, Y. L., Peltier, G. (2011). Oil accumulation in the model green algae Chlamydomonasreinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol., 11, 1-15. https://doi.org/10.1186/1472-6750-11-7.
- Sun, H., Wang, E. Z., Li, X., Cui, X., Guo, J., Dong, R. (2021). Potential biomethane production from crop residues in China: Contributions to carbon neutrality. Renewable Sustainable Energy Rev., 148, 111360. https://doi.org/10.1016/j.rser.2021.111360.
- Tang, Y., Zhang, P., Liu, D., Pei, Z. J., Cong, W. (2012). Ultrasonic Vibration-Assisted Pelleting of Cellulosic Biomass for Biofuel Manufacturing: A Study on Pellet Cracks. J. Manuf. Sci. Eng., 134(5), 051016. https://doi.org/10.1115/1.4007467.
- Tarafdar, A., Sirohi, R., Gaur, V. K., Kumar, S., Sharma, P., Varjani, S., Pandey, H. O., Sindhu, R., Madhavan, A., Rajasekharan, R., Sim, S. J. (2021). Engineering interventions in enzyme production: Lab to industrial scale. Bioresour. Technol., 326, 1-10. https://doi.org/10.1016 /j.biortech.2021.124771.
- Tibesigwa, T., Iezzi, B., Lim, T. H., Kirabira, J. B., & Olupot, P. W. (2023). Life cycle assessment of biodiesel production from selected second-generation feedstocks. Cleaner Engineering and Technology, 13, 100614. https://doi.org/10.1016/j.clet.2023.100614.
- Veza, I. et al. (2022). Microalgae and Macroalgae for Third-Generation Bioethanol Production. In: Soccol, C.R., Amarante Guimarães Pereira, G., Dussap, CG., Porto de Souza Vandenberghe, L. (eds) Liquid Biofuels: Bioethanol. Biofuel and Biorefinery Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-01241-9_14.
- Wang, M., Han, J., Dunn, J. B., Cai, H., Elgowainy, A. (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 7, 045905. http://dx.doi.org/10.1088/1748-9326/7/4/045905.
- Weber S, Grande PM, Blank LM, Klose H (2022) Insights into cell wall disintegration of Chlorella vulgaris. PLoS ONE 17(1): e0262500. https://doi.org/10.1371/journal.pone.0262500.
- Williams, C., Bentley, S., Peramatukorn, C., Rafi, H. (2018). Evaluating Algae as an Alternative Fuel for Chemical Looping Combustion. PAM Review: Energy Science & Technology. 5: 37-55. https://doi.org/10.5130/pamr.v5i0.1493.
- Williams, P. J. B., Laurens, L. M. L. (2010). “Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics” Energy Environ. Sci., 3(5), 554-590. http://dx.doi.org/10.1039/b924978h.
- Xing, H., Stuart, C., Spence, S., Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J. Clean. Prod., 297, 126651. https://doi.org/10.1016/j.jclepro.2021.126651.
- Xu, H., Miao, X., Wu, Q. (2006). “High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters” J. Biotechnol., 126(4), 499-507. https://doi.org/10.1016/j.jb iotec.2006.05.002.
- Xu, H., Wang, C. (2016). A Comprehensive Review of 2, 5-Dimethylfuran as a Biofuel Candidate. In Biofuels from Lignocellulosic Biomass: Innovations beyond Bioethanol; Wiley-VCH. Weinheim, Germany, pp. 105-129. http://dx.doi.org/10.1002/9783527685318.ch5.
- Xu Y, Yu H, Zhu L, Wang K, Cui Z, Hu X (2012) Preparation of bio-fuel from Chlorella pyrenoidosa by hydrothermal catalytic liquefaction. Trans. Chin. Soc. Agric. Eng., 28(19), 194-199. http://dx.doi.org/10.3969/j.issn.1002-6819.2012.19.026.
- Yang B, Wyman CE (2008) Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Biorefin., 2, 26-40. http://dx.doi.org/10.1002/bbb.49.
- Zacharia, K. M. B., Yadav, S., Machhirake, N. P., Kim, S. H., Lee, B. D., Jeong, H., Singh, L., Kumar, S., Kumar, R. (2020). Bio-hydrogen and bio-methane potential analysis for production of bio-hythane using various agricultural residues. Bioresour. Technol., 309, 123297. https://doi.org/10.1016/j.biortech.2020.123297.
- Zheng, Z., Srinuan, C., & Rojniruttikul, N. (2025). Exploring the impact of digital platform on energy-efficient consumption behavior: A multi-group analysis of air conditioning purchase in China using the extended TPB model. Sustainability, 17(11), 5192. https://doi.org/10.3390/su17115192.
- Zhang, W., He, J., Engstrand, P., Björkqvist, O. (2015). Economic evaluation on bio-synthetic natural gas production integrated in a thermomechanical pulp mill. Energies, 8(11), 12795-12809. https://doi.org/10.3390/en81112343.
- Zhou, J., Wang, Z., Ding, D., & Liu, C. (2023). Research and prospect of food fuels issues. Journal of Energy Bioscience, 14(2), 1–7. https://doi.org/10.5376/jeb.2023.14.0002.