Novel antidiabetic therapeutics from some Indian medicinal plant kingdom
DOI:
https://doi.org/10.12723/mjs.70.10Keywords:
Antidiabetic activity, Diabetes mellitus, Flavanoids, Phenolic compounds, Phytochemical compounds, Medicinal plantsAbstract
Diabetes mellitus (DM) becomes a serious global problem as it is responsible for annual 1.5 million deaths. The extreme change in food habits and the fast lifestyle causes metabolic or endocrine disorders, which lead to Diabetes Mellitus (DM). The presently available synthetic drugs possess numerous side effects. They are very costly and limited ease of use, efficiency and acceptability. Natural products are playing a major role in the treatment of numerous chronic diseases and drug discovery processes. The superiority of natural product drugs over synthetic drugs is because the former are safer and easily available. For this reason, researchers are now trying to find novel and more potent antidiabetic drugs from traditional medicinal plants. A number of plant-generated chemical compounds, especially polysaccharides, glycosides, terpenes, flavonoids, and polypeptides possessing antidiabetic activity, are isolated from various medicinal plants worldwide. These natural antidiabetic medications alter metabolic imbalances through a number of cellular and molecular pathways, preventing diabetic problems from developing. Nowadays, a great scientific interest has been aimed at the use of traditional antihyperglycemic medicinal plants as a daily food supplement. Inspired by the virtues of nature-based medicines, pharmacologists, phytochemists and pharmacognosists are extensively engaged in further research for the development of natural antidiabetic drugs nature. They advocate for the use of antidiabetic agents from nature’s pharmacy, especially from plants, for the long-term remedy of diabetic patients.
References
Roglic, G., Unwin, N., Bennett, P. H., Mathers, C., Tuomilehto, J., Nag, S., Connoly, V., & King, H. (2005). The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care, 28, 2130–2135.
Xiao, J. B., & Högger, P. (2015). Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Current Medicinal Chemistry, 22, 23–38.
Piero, M. N., Nzaro, G.M., & Njagi, J. M. (2014). Diabetes mellitus? a devastating metabolic disorder. Asian Journal of Biomedical and Pharmaceutical Sciences, 4, 1–7.
Rathmann, W., & Giani, G. (2004). Global Prevalence of Diabetes: Estimates for the Year 2000 and Projections for 2030: Response to Wild et al. Diabetes Care, 27, 2568–2569.
Cade, W. T. (2008). Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical Therapy, 88(11), 1322–1335.
Chen, T., Gao, J., Xiang, P., Chen, Y., Ji, J., Xie, P., Wu, H., Xiao, W., Wei, Y., Wang, S., Lan, L., Ji, H., & Yan, T. (2015). Protective effect of platycodin D on liver injury in alloxan-induced diabetic mice via regulation of Treg/Th17 balance. International Immunopharmacology, 26, 338–348.
Fajans, S. S., Bell, G. I., Herman, W.H., Polonsky, K.S., Halter, J. B. (2001) Beta-cell dysfunction in prediabetic and diabetic MODY subjects, Journal of Diabetes and its Complications. 15(1) 15.
Teo, A. K. K., Windmueller, R., Johansson, B. B., Dirice, E., Njolstad, P. R., Tjora, E., Raeder, H., Rohit N. Kulkarni,R.N. (2013). Derivation of Human Induced Pluripotent Stem Cells from Patients with Maturity Onset Diabetes of the Young*[S]. Journal of Biological Chemistry, 288(8), 5353-5356.
Jothivel, N., Ponnusamy, S. P., Appachi, M., Singaravel, S., Rasilingam, D., Deivasigamani, K., & Thangavel, S. (2007). Anti-diabetic Activity of Methanol Leaf Extract of Costus pictus D. DON in Alloxan-induced Diabetic Rats. Journal of Health Science, 53, 655–63.
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw J. E., Bright, D., Williamsh, R.(2019). Global and regional diabetes prevalence estimates
for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843.
Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & Kaabi, J. A. (2020). Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10 (1), 107–111.
International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: February 2021. Available at: https://www.diabetesatlas.org
Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., Smith, A. E., Dalton, B. E., Duprey, J., Cruz, J. A., & Hagins, H. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 402, 203–234.
Arvind, A., Memel, Z. N., Philpotts, L. L., Zheng, H., Kathleen E. Corey, K. E., & Simon, T. G. (2021). Thiazolidinediones, alpha-glucosidase inhibitors, meglitinides, sulfonylureas, and hepatocellular carcinoma risk: A meta-analysis, Metabolism, 120, 154780.
DeFronzo, R. A. (2011). Bromocriptine: a sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care, 34, 789–794.
Campbell, I. W., & Howlett, H. C. (1995). Worldwide experience of metformin as an effective glucose-lowering agent: a meta-analysis. Diabetes/Metabolism Reviews, 11(1), S57–62.
Lalau, J. D., Westeel, P. F., Debussche, X., Dkissi, H., Tolani M., Coevoet, B., Temperville, B., Fournier, A., & Quichaud, J. (1987). Bicarbonate haemodialysis: an adequate treatment for lactic acidosis in diabetics treated by metformin. Intensive Care Medicine, 13(6), 383–387.
Lalau, J. D., Lacroix, C., Compagnon, P., Cagny, B. d., Rigaud, J. P., Bleichner, G., Chauveau, P., Dulbecco, P., Guerin, C., Haegy, J. M., Loirat, P., Marchand, B., Ravaud, Y., Weyne, P., & Fournier, A. (1995). Role of Metformin Accumulation in Metformin-Associated Lactic Acidosis. Diabetes Care, 18(6), 779–784.
Cardoso, S., & Moreira, P. I. Chapter Two - Antidiabetic drugs for Alzheimer's and Parkinson's diseases: Repurposing insulin, metformin, and thiazolidinediones, Editor(s): G. Söderbom, R. Esterline, J. Oscarsson, M. P. Mattson, International Review of Neurobiology, Academic Press, 2020, 155, Pages 37-64.
Leite, R. S., Marlow, N.M., Fernandes, J. K. & Hermayer, K. (2013). Oral health and type 2 diabetes. The American Journal of the Medical Sciences, 345(4), 271–273.
Lebovitz, H.E. (2011). Type 2 diabetes mellitus-current therapies and the emergence of surgical options. Nature Reviews. Endocrinology, 7, 408–419.
Kahn, S. E., Haffner, S. F., Heise, M. A., Herman, W. H., Holman, R. R., Jones, N. P., Kravitz, B. G., Lachin, J. M., O'Neill, M. C., Zinman, B., Viberti, G., & ADOPT Study Group. (2007). Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. The New England Journal of Medicine, 355, 2427–2443.
Deshmukh, C. D., & Jain, A. (2015). Diabetes Mellitus: A Review. International Journal of Pure & Applied Bioscience, 3, 224–230.
Halin, E. M. (2003). Effect of Coccinia indica (L.) and Abroma augusta (L.) on glycemia, lipid profile and on indicators of end-organ damage in streptozotocin induced diabetic rats. Indian journal of clinical biochemistry: IJCB. 18, 54–63.
Dowarah, J., & Singh V. P. (2020). Anti-diabetic drugs recent approaches and advancements, Bioorganic & Medicinal Chemistry, 28, 115263.
Tang, B., Sjölander, A., Wastesson, J. W., Maura, G., Pierre-Olivier Blotiere, P. O-., Szilcz, M., Mak, J. K. L., Qin, C., Alvarsson, M., Religa, D., Johnell, K., & Hägg, S. (2024). Comparative effectiveness of glucagon-like peptide-1 agonists, dipeptidyl peptidase-4 inhibitors, and sulfonylureas on the risk of dementia in older individuals with type 2 diabetes in Sweden: an emulated trial study, eClinicalMedicine, 73, 102689.
Ray, S. D., Hussain, A., Niha, A., Krmic, M., Jalshgrari, A., Diana Genis, D., Reji, J. Anti diabetic agents, Editor(s): P. Wexler, Encyclopedia of Toxicology (Fourth Edition), Academic Press, 2024, Pages 573-589.
Gupta, T., Rani, D., Nainwal, L. M., & Badhwar, R. (2024). Advancement in chiral heterocycles for the antidiabetic activity, Chirality, 36(2), e23637.
Sagandira, C. R., Khasipo, A. Z., Sagandira, M. B., & Watts, P. (2021). An overview of the synthetic routes to essential oral anti-diabetes drugs,
Tetrahedron, 96, 132378.
Paul, A., Kumar, M., Das, P., Guha, N., Rudrapal, M., & Zaman M. K. (2022). Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy, Biomedicine & Pharmacotherapy, 156, 113846.
Seltzer, H.S. (1989). Drug-induced hypoglycemia. A review of 1418 cases. Endocrinology & Metabolism Clinics of North America, 18(1), 163–183.
Idris, I., Gray, S., & Donnelly, R. (2003). Rosiglitazone and pulmonary oedema: an acute dose-dependent effect on human endothelial cell permeability. Diabetologia, 46(2), 288–290.
Dhawan, M., Agrawal, R., Ravi, J., Gulati, S., Silverman, J., Nathan, G., Raab, S., & Jr, G. B. (2002). Rosiglitazone- induced granulomatous hepatitis. Journal of Clinical Gastroenterology, 34(5):582–584.
Mihailova, S., Tsvetkova, A., & Todorova, A. (2015). Pharmacological trends in the treatment of diabetes type 2-New classes of antidiabetic drugs. International Archives of Integrated Medicine, 2, 223–228.
Hollander, P. (2007). Anti-Diabetes and Anti-Obesity Medications: Effects on Weight in People with Diabetes. Diabetes Spectrum, 20, 159–165.
Mane, P. B., Antre, R. V., & Oswal, R. J. (2012). Antidiabetic Drugs: An Overview. International Journal of Pharmaceutical and Chemical Sciences, 1(1), 301–306.
Bell, K. J., Colagiuri, S., & Brand-Miller, J. (2020). Diabetes and insulin resistance. In B. P. Marriott, D. F. Birt, & A. A. Yates (Eds.), Present knowledge in nutrition (11th ed., Vol. 2, pp. 361–377). Academic Press.
Nasrallah, S. N., & Reynolds, L. R. (2012). Insulin Degludec, The New Generation Basal Insulin or Just another Basal Insulin? Clinical Medicine Insights. Endocrinology and Diabetes, 5, 31–37.
Mo, X., Ai, Y., J Tan, J., & Wang, L. J. (2024). EE107 Long-Term Cost-Effectiveness of iGlarLixi Versus IDegLira in Patients With Uncontrolled Type 2 Diabetes Treated With Basal Insulin or Oral Antidiabetic Drug in China, Value in Health, Supplement, 27(6), S77.
Kalra, S., Aamir, A.H., Raza, A., Das, A. K., Khan, A. K. A., & Shrestha, D. et al. (2015). Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement, Indian Journal of Endocrinology and Metabolism, 19, 577–596.
Sarkar, A., Tiwari, A., Bhasin, P. S., & Mitra M. (2011). Pharmacological and Pharmaceutical Profile of Gliclazide: A Review. Journal of Applied Pharmaceutical Science, 1(9), 11–19.
Bailey, C. J., & Krentz A. J. (2010). Oral antidiabetic agents. In Holt, R.I.G., Cockram, C. S., Flyvbjerg, A., Goldstein, B. J., (Ed.), Textbook of diabetes. 4th ed. (pp. 452–477). (New Jersey, United States): Blackwell Publishing Ltd.
Goldstein, B. J. (2002). Differentiating members of the thiazolidinedione class: a focus on efficacy. Diabetes/metabolism research and reviews, 18, S16–22.
Basak, S., Murmu, A., Matore, B. W., Roy, P. P., & Singh, J. (2024). Thiazolidinedione an auspicious scaffold as PPAR-γ agonist: its possible mechanism to Manoeuvre against insulin resistant diabetes mellitus, European Journal of Medicinal Chemistry Reports, 11, 100160.
Liu, C., Wu, D., Zheng, X., Li, P., & Li, L. (2015). Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis. Diabetes technology & therapeutics, 17, 142–148.
Golubev, A. G., & Anisimov, V. N. (2024). The gerontological saga of antidiabetic biguanides: From ignorance to prudence via high hopes, Translational Medicine of Aging, 8, 12-19.
Garber, A.J., Abrahamson, M. J., Barzilay, J. I., Blonde, L., Bloomgarden, Z. T., & Bush, M. A. et al. (2013). American Association of Clinical Endocrinologists' comprehensive diabetes management algorithm 2013 consensus statement--executive summary. Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 19, 536–557.
Malaisse, W. J. (2003). Pharmacology of the meglitinide analogs: new treatment options for type 2 diabetes mellitus. Treatments in endocrinology, 2, 401–414.
Derosa, G., Mugellini, A., Ciccarelli, L., Crescenzi, G., Fogari, R. (2003). Comparison between repaglinide and glimepiride in patients with type 2 diabetes mellitus: a one-year, randomized, double-blind assessment of metabolic parameters and cardiovascular risk factors R. Clinical therapeutics, 25, 472–484.
Bischoff, H. (1994). Pharmacology of alpha-glucosidase inhibition. European journal of clinical investigation, 24, 3–10.
Derosa, G., & Maffioli, P. (2012). α-Glucosidase inhibitors and their use in clinical practice. Archives of medical science: AMS, 8, 899–906.
Singh, A., Singh, K., Sharma, A., Kaur, K., Kaur, K., Renu Chadha, R., & Bedi, P. M. S. (2023). Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight, Journal of Molecular Structure, 1281, 135115.
Mushtaq, A., Azam, U., Mehreen, S., & Naseer, M. M., (2023). Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges, European Journal of Medicinal Chemistry, 249, 115119.
Deacon, C. F., & Holst J.J. (2013). Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: comparison, efficacy and safety. Expert opinion on pharmacotherapy, 14: 2047–2058.
Monami, M., Dicembrini, I., & Mannucci, E. (2014). Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutrition, metabolism, and cardiovascular diseases: NMCD, 24, 689–697.
Hamrick, I., Goblirsch, M. J., Wen-Jan Tuan, W. J-., & Beckham, F. (2022). Transitioning from insulin to dipeptidyl-peptidase 4 (DPP-4) inhibitors for type 2 diabetes, Geriatric Nursing, 46, 86-89.
Kalra, S., Baruah, M. P., Sahay, R. K., Unnikrishnan, A. G., Uppal, S., & Adetunji, O. (2016). Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future. Indian Journal of Endocrinology and Metabolism. 20, 254–267.
Nauck, M. A., Kleine, N., Orskov, C, Holst J. J., Willms B, & Creutzfeldt, W. (1993). Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients Diabetologia, 36, 741–4.
Zhang, X., Cai, Y., Yao, Z., Chi, H., Li, Y., Shi, J., Zhou, Z., & Sun, L. (2023). Discovery of novel OXM-based glucagon-like peptide 1 (GLP-1)/glucagon receptor dual agonists, Peptides, 161, 170948.
Bakris, G.L., Fonseca, V. A., Sharma, K., & Wright, E. M. (2009). Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney International, 75, 1272–7.
Liakos, A., Karagiannis, T., Athanasiadou, E., Sarigianni, M., Mainou, M., Papatheodorou, K.Bekiari, E., & Tsapas, A. (2014). Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes, Obesity & Metabolism., 16, 984–93.
Navarro, M., Gomà, M., Tango, A., Rap, O., Cabrera, C., Sánchez, A., Farré, N., Ruiz, P., & Ibernon, M. (2024). WCN24-1063 The role of sodium-glucose cotransporter 2 (SGLT2) inhibitors in Diabetic Nephropathy and Non Diabetic Renal Disease in Diabetes Mellitus type2 Patients, Kidney International Reports, 9(4), Supplement, S225.
Luo, S., Meier, A. H., & Cincotta, A. H. (1998). Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology, 1998; 68, 1–10.
Ramteke, K. B., Ramanand, S. J., Ramanand, J. B., Jain, S.S., Raparti, G. T., Patwardhan M. H., Murthi, M., & Ghanghas, R. G. (2011). Evaluation of the efficacy and safety of bromocriptine QR in type 2 diabetes. Indian journal of
endocrinology and metabolism, 15, S33–9.
Aslanoglou, D., Bertera, S., Friggeri, L., Soto, M. S-., Lee, J., Xue, X., Logan, R.W., Lane, J. R., Yechoor,V. K., McCormick, P. J., Meiler, J., Free, R. B., Sibley, D. R., Bottino, R., & Freyberg, Z. (2022). Dual pancreatic adrenergic and dopaminergic signaling as a therapeutic target of bromocriptine, iScience, 25(8), 104771.
Arulselvan, P., Ghofar, H. A. A., Karthivashan, G., Halim, M. F. A., Ghafar, M. S. A., & Fakurazi, S. (2014). Antidiabetic therapeutics from natural source: A systematic review. Biomedicine & Preventive Nutrition, 4(4), 607-617.
Dikkala, P. K., Kakarlapudi, J., Rokalla, P., Sai Krishna Vedantam, S. K., Kaur, A., Kaur, K., Minaxi Sharma, M., & Sridhar, K. (2023). Chapter 13-Computational screening of phytochemicals for anti-diabetic drug discovery, Editor(s): C. Egbuna, M. Rudrapal, H. Tijjani, In Drug Discovery Update, Phytochemistry, Computational Tools and Databases in Drug Discovery, Elsevier, 285-311.
Chaudhary, N., & Tyagi, N. Chapter 15-Pharmacological profile of medicinal plants used to control diabetes, Editor(s): M. Naeem, T. Aftab, Antidiabetic Medicinal Plants, Academic Press, 2024, Pages 475-490.
Chakraborty, R., Roy, S., & Mandal, V. (2016). Assessment of traditional knowledge of the antidiabetic plants of Darjeeling and Sikkim Himalayas in the context of recent phytochemical and pharmacological advances. Journal of Integrative Medicine, 14(5), 336–358.
Lema, G. D., Gebeyaw, E. D., Yferu, Z. A., Mulatu, S. F., Dagnaw, A. B., Aydagnuhm, G. B., & Ayicheh, E. A. (2024). Herbal medicine use and its impact on glycemic control among diabetes patients at governmental hospitals in Debre Berhan, Ethiopia: A cross-sectional study, Metabolism Open, 23, 100311.
Sriraman, S., Sreejith, D., Andrew, E., Okello, I., & Willcox, M. (2023). Use of herbal medicines for the management of type 2 diabetes: A systematic review of qualitative studies, Complementary Therapies in Clinical Practice, 53, 101808.
Zahoor, I., Mir, T. A., Ganaie, T. A., Farhana Mehraj Allai, F. M., Ayoub, W. S., & Farooq, S. (2024). Antidiabetic potential from selected Himalayan underutilized herbs: a review, Food and Humanity, 2, 100297.
Upadhyay, T. K., Das, S., Mathur, M., Alam, M., Bhardwaj, R., Joshi, N., & Sharangi, A. B. Chapter 10 - Medicinal plants and their bioactive components with antidiabetic potentials, Editor(s): M. Naeem, Tariq Aftab, Antidiabetic Medicinal Plants, Academic Press, 2024, Pages 327-364.
Andrade, C., Gomes, N. G. M., Duangsrisai, S., Andrade, P. B., David M. Pereira, D. M., & Valentão, P. (2020). Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals, Journal of Ethnopharmacology, 263, 113177.
Tatke, P., & Waghmare, R. Chapter 16 - Antidiabetic plants with insulin mimetic activity, Editor(s): M. Naeem, T. Aftab, Antidiabetic Medicinal Plants,
Academic Press, 2024, Pages 491-513.
Adki, K. M., Laddha, A. P., Gaikwad, A. B., & Kulkarni, Y. A. Chapter 26 - Potential Role of Seeds From India in Diabetes, Editor(s): V. R. Preedy, R. R. Watson, Nuts and Seeds in Health and Disease Prevention (Second Edition), Academic Press, 2020, Pages 365-391.
Kaushik, A., Sangtani, R., Parmar, H. S., & Bala, K. (2023). Algal metabolites: Paving the way towards new generation antidiabetic therapeutics, Algal Research, 69, 102904.
Mata, R., L. Flores-Bocanegra, L. F-., Magallanes, B. O-, & Figueroa, M. (2023). Natural products from plants targeting key enzymes for the future development of antidiabetic agents, Natural Product Reports, 40(7), 7, 1198-1249.
Ajilore, B. S., Olorunnisola, O. S., & Owoade, O. A. (2020). Tetracarpidium Conophorum (African Walnut) seeds protects against diabetes-induced liver damage in rats treated with streptozotocin. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 27 (2), 135–145.
Chaudhari, A. K., & Das, S. Chapter 3 - Natural products: Origin, biosynthesis, and applications in pharmaceutics, therapeutics, and food systems, Editor(s): B. Prakash, J. F. B. d. S. José, Green Products in Food Safety, Academic Press, 2023, Pages 81-109.
Hashmi, Z., Sarkar, D., Mishra, S., & Mehra, V. (2022). An in-vitro assessment of antiinflammatory, antioxidant, and anti-hyperglycemic activities of traditional edible plants-Murraya koenigii, Mentha spicata, and Coriandrum sativum. Journal of Biomedical and Therapeutic Sciences, 9, 1–10.
Jeong, E., Youjin Baek Y., Kim H. –J., & Lee, H. G., (2024). Comparison of the anti-diabetic effects of various grain and legume extracts in high-fat diet and
streptozotocin-nicotinamide-induced diabetic rats, Heliyon, 10, e25279.
Nurcahyanti, A. D. R., Jap, A., Lady, J., Prismawan, D., Sharopov, F., Daoud, R., Wink, M., & Sobeh, M. (2021). Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade, Biomedicine & Pharmacotherapy, 144, 112138.
Prasopthum, A., Insawek, T., & Pouyfung, P. (2022). Herbal medicine use in Thai patients with type 2 diabetes mellitus and its association with glycemic control: A cross-sectional evaluation, Heliyon, 8(10), e10790.
Yadav, J. P., Singh, A. K., Grishina, M., Pathak, P., & Patel, D. K. (2022). Cucumis melo Var. agrestis Naudin as a potent antidiabetic: Investigation via experimental methods, Phytomedicine Plus, 2(4), 100340.
Teotia, D., Agrawal, A., Goyal, H., Jain, P., Singh, V., Verma, Y., Perveen, K., N. A. Bukhari., Chandra, A., & Malik, V. (2024). Pharmacophylogeny of genus Allium L, Journal of King Saud University - Science, 36(8), 103330.
Krisanapun, C., Lee, S. H., Peungvicha, P., Temsiririrkkul, R., & Baek, S. J. (2011). Antidiabetic Activities of Abutilon indicum (L.) Sweet Are Mediated by Enhancement of Adipocyte Differentiation and Activation of the GLUT1
Promoter Evidence-based complementary and alternative medicine: eCAM, 2011, 167684.
Matlawska, I., Sikorska, M., El-Sayed, N. H., Budzianowski, J., Holderna-Kedzia, E., & Mabry, T. J. (2007). Bioactive Flavone Sulfates of Abutilon indicum Leaves. Natural Product Communications, 2(10):1003–1008.
Kumar, V., Ahmed, D., Verma, A., Anwar, F., & Mujeeb, M. (2013). Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.) corr. an ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity. BMC complementary and alternative medicine, 13, 273.
Tiwari, R., Mishra, S., Danaboina, G., Jadaun, G. P. S., Kalaivani, M., Kalaiselvan, V., Dhobi, M., & Raghuvanshi, R. S. (2023) Comprehensive chemo-profiling of coumarins enriched extract derived from Aegle marmelos (L.) Correa fruit pulp, as an anti-diabetic and anti-inflammatory agent, Saudi Pharmaceutical Journal, 31(9), 101708.
Choudhary, S., Chaudhary, G., & Kaurav, H. (2021). Aegle Marmelos (Bael Patra): An ayurvedic plant with ethnomedicinal value. International journal of research in ayurveda and pharmacy, 12, 147–156.
Sarkar, T., Salauddin, M., Chakraborty, R., (2020). In-depth pharmacological and nutritional properties of bael (Aegle marmelos): A critical review. Journal of Agriculture and Food Research, 2, 100081.
Jong-Anurakkun, N., Bhandari, M. R., Hong, G., & Kawabata, J. (2008). α-Glucosidase inhibitor from Chinese aloes. Fitoterapia, 79(6): 456–457.
Anand, S., Muthusamy, V.S., Sujatha, S., Sangeetha, K. N., Raja, R. B., Sudhagar, S., Devi, N. P., & Lakshmi, B. S. (2010). Aloe emodin glycosides stimulates glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. FEBS letters, 584(14), 3170–3178.
Mukherjee, A., & Sengupta, S. (2013). Characterization of nimbidiol as a potent intestinal disaccharidase and glucoamylase inhibitor present in Azadirachta indica (neem) useful for the treatment of diabetes. Journal of Enzyme Inhibition and Medicinal Chemistry, 5, 900–910.
Islas, J. F., Acosta, E., Buentello, Z. G-., Gallegos, J. L. D-., Guadalupe M., Treviño, M-., Escalante, B., & Cuevas, J. E. M-. (2020). An overview of Neem (Azadirachta indica) and its potential impact on health, Journal of Functional Foods, 74, 104171.
Singh, J., & Kakkar, P. (2009). Antihyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. Journal of ethnopharmacology, 123(1), 22–26.
Gupta, J. K., Mishra, P., Rani, A., & Mazumder, P. M. (2010). Blood Glucose Lowering Potential of Stem Bark of Berberis aristata Dc In Alloxan-Induced Diabetic Rats. Iranian Journal of Pharmacology and Therapeutics (IJPT), 9(1): 21–24.
Jahan, F., Alvi, S. S., & Islam, M. H. (2022). Berberis aristata and its secondary metabolites: Insights into nutraceutical and therapeutical applications, Pharmacological Research - Modern Chinese Medicine, 5, 100184.
Rajesh, M., Bátkai, S., Kechrid, M., Mukhopadhyay, P., Lee, W. S., & Horváth, B., et al. (2012). Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes, 61(3), 716–727.
Tiong, S.H., Looi, C.Y., Hazni, H., Arya, A., Paydar, J. M., Wong, W.F., Cheah, S-C., Mustafa, M.R., & Awang, K. (2013). Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 18(8), 9770–9784.
Kumar, S., Vasudeva, N., & Sharma, S., (2012). GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovascular Diabetology, 11: 95.
Sriramavaratharajan, V., Ilamathi M-Thirusenthilarasan, I. M-., Nirupama, R., Vadivel, V., Pragadheesh, V. S., Sundaresan, V., & Murugan, R. (2024). Volatile profiling of Cinnamomum heyneanum and Cinnamomum palghatensis and in vitro and in silico antidiabetic activity of essential oil nanoemulsions, Pharmacological Research - Natural Products, 100081.
Chen, L., Sun, P., Wang, T., Chen, K., Jia, Q., Wang, H., & Li, Y. (2012). Diverse mechanisms of antidiabetic effects of the different procyanidin oligomer types of two different cinnamon species on db/db mice. Journal of Agricultural and Food Chemistry, 60(36), 9144–9150.
Eliza, J., Daisy, P., Ignacimuthu, S., & Duraipandiyan, V. (2009). Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.)Sm., in STZ-induced diabetic rats. Chemico-biological interactions, 182(1), 67–72.
Li, F., Li, Q., Gao, D., & Peng, Y. (2009). The Optimal Extraction Parameters and Anti-Diabetic Activity of Flavonoids from Ipomoea Batatas Leaf. African journal of traditional, complementary, and alternative medicines: AJTCAM, 6(2), 195–202.
Sujatha, S., Anand, S., Sangeetha, K. N., Shilpa, K., Lakshmi, J., Balakrishnan, A., & Lakshmi B. S. (2010). Biological evaluation of (3β)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model. International Journal of Diabetes Mellitus, 2, 101– 109.
Tan, M. J., Ye, J.M., Turner, N., Hohnen-Behrens, C., Ke, C. Q., & Tang, C. P. et al., (2008). Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chemistry & Biology, 15(3), 263–273.
Latha, M., Pari, L., Ramkumar, K. M., Rajaguru, P., Suresh, T., Dhanabal, T., Sitasawad, S., & Bhonde, R. (2009). Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin induced diabetes. Natural Product Research, 23(16): 1528–1540.
Semwal, D. K., Rawat, U., Semwal, R., Singh, R., & Singh, G.J. (2010). Antihyperglycemic effect of 11-hydroxypalmatine, a palmatine derivative from Stephania glabra tubers. Journal of Asian Natural Products Research, 12(2): 99–105.
Kavitha, K. N., & Dattatri A.N. (2013). Experimental evaluation of antidiabetic activity of Swertia chirata—aqueous extract. Journal of Public Health and Medical Research, 1(2), 71–75.
Kumar, A., Ilavarasan, R., Jayachandran, T., Deecaraman, M., Aravindan, P, Padmanabhan, N., & Krishan, M. R. V. (2008). Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats. Journal of medicinal plant research, 2(9), 246–249.
Sawant, L., Singh, V. K., Dethe, S., Bhaskar, A., Balachandran, J., Mundkinajeddu, D., & Agarwal, A. (2015). Aldose reductase and protein tyrosine phosphatase 1B inhibitory active compounds from Syzygium cumini seeds. Pharmaceutical Biology, 53(8), 1176–1182.
Lee, H. S., Cho, H. Y., Park, K. W., Kim, I. H., Kim, J. T., Nam M. H, & Lee, K. W. (2011). Inhibitory effects of Terminalia chebula extract on glycation and endothelial cell adhesion. Planta Medica, 77(10), 1060–1067.
Sasidharan, I., Sundaresan, A., Nisha, V. M., Kirishna, M. S., Raghu, K.G., & Jayamurthy, P. (2012). Inhibitory effect of Terminalia chebula Retz. fruit extracts on digestive enzyme related to diabetes and oxidative stress. Journal of enzyme inhibition and medicinal chemistry, 27(4), 578–586.
Yan, Y., Abdulla, R., Xin, X., & Aisa, H. A. (2024) Revealing the potential hypoglycaemic ingredients of Terminalia chebula Retz. by spectrum–effect relationship combining molecular docking and experimental validation,
Journal of Functional Foods, 121, 106402.
Poudel, P., Thapa, R., Lamichhane, S., Hem Raj Paudel, H. R., & Devkota, H. P. Chapter 40 - Terminalia chebula Retz., Editor(s): T. Belwal, I. Bhatt, H. Devkota, Himalayan Fruits and Berries, Academic Press, 2023, Pages 435-449.
Sengupta, S., Mukherjee, A., Goswami, R., & Basu S. (2009). Hypoglycemic activity of the antioxidant saponarin, characterized as α-glucosidase inhibitor present in Tinospora cordifolia. Journal of enzyme inhibition and medicinal
chemistry, 24(3), 684–690.
Sangeetha, M. K., Priya, C. D., & Vasanthi, H. R. (2013). Antidiabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes. Phytomedicine, 20(3–4), 246–248.
Haeri, M. R., Limaki, H. K., White, C. J., & White K.N. (2012). Noninsulin dependent anti-diabetic activity of (2S, 3R, 4S) 4-hydroxyisoleucine of fenugreek (Trigonella foenum graecum) in streptozotocin-induced type I diabetic rats. Phytomedicine, 19(7), 571–574.
Prince, P. S., & Kamalakannan, N. (2006). Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytc and gluconeogenetic enzymes. Journal of Biochemical and Molecular Toxicology, 20, 96–102.
Kato, A., Higuchi, Y., Goto, H., Kizu, H., Okamoto, T., Asano, N., Hollinshead, J., Nash, R. J., & Adachi, I. (2006). Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo. Journal of Agricultural and Food Chemistry, 54(18), 6640– 6644.
Chakraborty, D., Mukherjee, A., Sikdar, S., Paul, A., Ghosh, S., & Khuda-Bukhsh A. R. (2012). [6]–Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicology Letters, 210(1), 34–43.
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Dr. Sudipta Saha
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.