Vol. 23 No. 4 (2024): Upcoming Articles
Research Articles

Identification of active leads in Andrographis Paniculata leaves for controlling the growth of two opportunistic bacteria

Vinod P Raphael
Government Engineering College Thrissur
Bindu T K
2Department of Chemistry, Govt. Engineering College, Thrissur, Kerala -680009
Shaju K S
Department of Chemistry, Panampilly Memorial Government College, Thrissur, Kerala-680722
Sunil Jose T
Department of Chemistry, St. Thomas’ College, Thrissur, Kerala-680001

Published 2024-12-23

Keywords

  • Andrographis paniculata,
  • E. faecalis,
  • K. pneumoniae,
  • docking,
  • beta lactamase

Abstract

Opportunistic pathogens like E. faecalis and K. pneumoniae exploit weakened immune systems, causing diverse infections, often resistant to antibiotics. This study explored Andrographis paniculata's potential against these pathogens. Extracts from its leaves, notably acetone, showed significant inhibitory effects on both bacteria. GC-MS analysis identified eighteen compounds; three showed promising drug-like properties. Molecular docking studies revealed Andrographolide's efficacy against essential bacterial enzymes. It inhibited triphosphohydrolase, lactate dehydrogenase, and lipoyl synthase in E. faecalis, and dihydrofolate reductase and SHV-11 beta-lactamase in K. pneumoniae. Andrographolide holds promise for developing novel antibacterial therapeutics. This research underscores the importance of exploring plant-based remedies in combating antibiotic-resistant pathogens, offering potential alternatives for pharmaceutical intervention. Further investigation into the mechanisms of action and in vivo efficacy of Andrographis paniculata extracts and their active compounds is warranted to advance their therapeutic potential in clinical settings.

References

  1. Rossi, F., Santonicola, S., Amadoro C., Marino, L., Colavita, G. (2023) Recent Records on Bacterial Opportunistic Infections via the Dietary Route. Microorganisms 29;12(1):69. doi: 10.3390/microorganisms12010069. PMID: 38257896
  2. Katharine, M., Jimstan N., Periselneris Jeremy S. (2023) Opportunistic bacterial, viral and fungal infections of the lung, Medicine, 51(11) 777-783, https://doi.org/10.1016/j.mpmed.2023.08.002.
  3. Wu Y., Wang Y., Yang H., Li Q., Gong X., Zhang G., et al. (2021) Resident bacteria contribute to opportunistic infections of the respiratory tract. PLoS Pathog 17(3): e1009436. https://doi.org/10.1371/journal.ppat.1009436
  4. Ogawa, T., Ikebe, K., Enoki, K., Murai, S., & Maeda, Y. (2012). Investigation of oral opportunistic pathogens in independent living elderly Japanese. Gerodontology, 29(2). https://doi.org/10.1111/j.1741-2358.2010.00449.x
  5. Martı́Nez, J. L. (2014). Short-sighted evolution of bacterial opportunistic pathogens with an environmental origin. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00239
  6. Riccardi, N., Rotulo, G. A., & Castagnola, E. (2019). Definition of opportunistic infections in immunocompromised children on the basis of etiologies and clinical features: A summary for practical purposes. Current Pediatric Reviews, 15(4), 197–206. https://doi.org/10.2174/1573396315666190617151745
  7. National Institutes of Health (US); Biological Sciences Curriculum Study. NIH Curriculum Supplement Series. Bethesda (MD): National Institutes of Health (US); 2007. Understanding Emerging and Re-emerging Infectious Diseases. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20370/
  8. Abdoli, A., Falahi, S., & Kenarkoohi, A. (2021). COVID-19-associated opportunistic infections: a snapshot on the current reports. Clinical and Experimental Medicine, 22(3), 327–346. https://doi.org/10.1007/s10238-021-00751-7
  9. Said MS, Tirthani E, Lesho E. Enterococcus Infections.. In: StatPearls Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567759/
  10. Gök ŞM, Türk Dağı H, Kara F, Arslan U et al (2020) Investigation of Antibiotic Resistance and Virulence Factors of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Clinical Samples. Mikrobiyol Bul, 54(1): 26-39. Turkish. doi: 10.5578/mb.68810. PMID: 32050876.
  11. Moon, B., Ali, M., Choi, J., Heo, Y., Lee, Y., Kang, H., Kim, T., Yoon, S., Moon, D. C., & Lim, S. (2023). Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Dogs and Cats in South Korea. Microorganisms, 11(12), 2991. https://doi.org/10.3390/microorganisms11122991
  12. Mikalsen, T., Pedersen, T., Willems, R. J. L., Coque, T. M., Werner, G., Sadowy, E., Van Schaik, W., Jensen, L., Sundsfjord, A., & Hegstad, K. (2015). Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics, 16(1). https://doi.org/10.1186/s12864-015-1407-6
  13. Moshokoa, M. F., Daramola, M. O., Adeleke, R., Ndaba, B., & Roopnarain, A. (2023). Influence of environmental factors on Enterococcus faecium for production of succinic acid in a batch reactor: A preliminary investigation. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.08.078
  14. Zowalaty, M. E. E., Lamichhane, B., Falgenhauer, L., Mowlaboccus, S., Zishiri, O. T., Forsythe, S., & Hemly, Y. A. (2023). Antimicrobial resistance and whole genome sequencing of novel sequence types of Enterococcus faecalis, Enterococcus faecium, and Enterococcus durans isolated from livestock. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42838-z
  15. Aung, M. S., Urushibara, N., Kawaguchiya, M., Ohashi, N., Hirose, M., Kudo, K., Tsukamoto, N., Ito, M., & Kobayashi, N. (2023). Antimicrobial Resistance, Virulence Factors, and Genotypes of Enterococcus faecalis and Enterococcus faecium Clinical Isolates in Northern Japan: Identification of optrA in ST480 E. faecalis. Antibiotics, 12(1), 108. https://doi.org/10.3390/antibiotics12010108
  16. Ashurst JV, Dawson A. Klebsiella Pneumonia.. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519004/
  17. Kuş H, Arslan U, Türk Dağı H, Fındık D.(2017) Investigation of various virulence factors of Klebsiella pneumoniae strains isolated from nosocomial infections, Mikrobiyol Bul, 51(4) 329-339. Turkish. doi: 10.5578/mb.59716. PMID: 29153063.
  18. Karimi, K., Zarei, O., Sedighi, P., Taheri, M., Doosti-Irani, A., & Shokoohizadeh, L. (2021). Investigation of Antibiotic Resistance and Biofilm Formation in Clinical Isolates of Klebsiella pneumoniae. International Journal of Microbiology, 2021, 1–6. https://doi.org/10.1155/2021/5573388
  19. Sharma A, Thakur A, Thakur N, Kumar V, Chauhan A, Bhardwaj N. Changing (2023) Trend in the Antibiotic Resistance Pattern of Klebsiella Pneumonia Isolated From Endotracheal Aspirate Samples of ICU Patients of a Tertiary Care Hospital in North India. Cureus. Mar, 17;15(3) (2023) e36317. doi: 10.7759/cureus.36317. PMID: 37077586; PMCID: PMC10106535.
  20. Li Y, Kumar S, Zhang L, Wu H. (2022) Klebsiella pneumonia and Its Antibiotic Resistance: A Bibliometric Analysis. Biomed Res Int, 6 1668789. doi: 10.1155/2022/1668789. PMID: 35707374; PMCID: PMC9192197.
  21. Arato, V., Raso, M. M., Gasperini, G., Scorza, F. B., & Micoli, F. (2021). Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. International Journal of Molecular Sciences, 22(8), 4042. https://doi.org/10.3390/ijms22084042
  22. Nyakudya, T.T., Tshabalala, T., Dangarembizi, R., Erlwanger, K.H., Ndhlala, A.R. (2020) The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules. 25(11):2669. doi: 10.3390/molecules25112669.
  23. Cheng, J.T, Liu, I.M., Shen, S.C (2022) Plant Therapeutics. Plants (Basel). 11(20):2720. doi: 10.3390/plants11202720. PMID: 36297743; PMCID: PMC9611926.
  24. Shikha, J., Klaudi, K. V., Amit A., (2023) Plant-based therapeutics: current status and future perspectives, Phytopharmaceuticals and Herbal Drugs, Academic Press,2023,
  25. Pages 3-11, ISBN 9780323991254, https://doi.org/10.1016/B978-0-323-99125-4.00003-2.
  26. Okhuarobo, A., Falodun, J. E., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014). Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pacific Journal of Tropical Disease, 4(3), 213–222. https://doi.org/10.1016/s2222-1808(14)60509-0
  27. Hossain MS, Urbi Z, Sule A, Hafizur Rahman KM. (2014) Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. Scientific World Journal 274905. doi: 10.1155/2014/274905. Epub 2014 Dec 24. PMID: 25950015; PMCID: PMC4408759.
  28. Kaewdech, A., Nawalerspanya, S., Assawasuwannakit, S., Chamroonkul, N., Jandee, S., & Sripongpun, P. (2022). The use of Andrographis paniculata and its effects on liver biochemistry of patients with gastrointestinal problems in Thailand during the COVID-19 pandemic: a cross sectional study. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-23189-7
  29. Gonde, D. P., Bhole, B. K., & Kakad, K. S. (2024). Andrographolide, diterpenoid constituent of Andrographis paniculata: Review on botany, phytochemistry, molecular docking analysis, and pharmacology. Annales Pharmaceutiques Françaises, 82(1), 15–43. https://doi.org/10.1016/j.pharma.2023.10.001
  30. Subramanian, R., Asmawi, M. Z., & Sadikun, A. (2011). A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochemistry Reviews, 11(1), 39–75. https://doi.org/10.1007/s11101-011-9219-z
  31. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1). https://doi.org/10.1038/srep42717
  32. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. (2000) The Protein Data Bank. Nucleic Acids Res. 28(1) 235-42. doi: 10.1093/nar/28.1.235. PMID: 10592235; PMCID: PMC102472.
  33. BIOVIA, Dassault Systèmes, San Diego: Dassault Systèmes, [2024].
  34. Yang, L., Yang, X., Gan, J., Chen, S., Xiao, Z. J., & Cao, Y. (2022). CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1), W159–W164. https://doi.org/10.1093/nar/gkac394