Vol. 23 No. 4 (2024): Upcoming Articles
Review Articles

A mini-review on laser-produced plasma in an external magnetic field: Plasma confinement and optical emission enhancement

Khwairakpam Shantakumar Singh
Assam University Silchar

Published 2024-12-23

Keywords

  • Laser ablation,
  • Magnetic confinement,
  • Enhancement of Optical emission

Abstract

The present work aims to provide an overview of magnetic-assisted ablation and subsequent production of plasma by laser. The paper discusses physical phenomena involved in magnetic field-assisted ablation, such as laser ablation efficiency enhancement, improvement in optical emission, plasma plume confinement, instability, and so on. It systematically reviews the studies conducted in the previous seven years on the effect of magnetic field on material removal using laser, which will help researchers in assessing current challenges and uses of magnetized laser plasma. It describes experimental techniques such as optical emission spectroscopy and imaging. This paper aims to help researchers investigating laser plasmas in understanding the fundamentals of magnetic field-assisted laser ablation, specifically focusing on physical phenomena, major challenges, methodologies, and applications.

References

  1. J.P.Singh, S.N.Thakur, Laser Induced Breakdown Spectroscopy, Elsevier, Amsterdam, 2007.
  2. S.S. Harilal, M.S. Tillack, B. O’Shay, C. V Bindhu, F. Najmabadi, Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field, Phys. Rev. E. 69 (2004) 26413 (1–11).
  3. N. Behera, R.K. Singh, A. Kumar, Confinement and re-expansion of laser induced plasma in transverse magnetic field: Dynamical behaviour and geometrical aspect of expanding plume, Phys. Lett. A. 379 (2015) 2215–2220.
  4. K.S. Singh, A.K. Sharma, Spatially resolved behavior of laser-produced copper plasma along expansion direction in the presence of static uniform magnetic field, Phys. Plasmas. 23 (2016) 122104. https://doi.org/10.1063/1.4969080.
  5. Y. Li, C.H. Hu, H.Z. Zhang, Z.K. Jiang, Z.S. Li, Optical emission enhancement of laser-produced copper plasma under a steady magnetic field, Appl. Opt. 48 (2009) B105–B110.
  6. V.N. Rai, Theoretical aspect of enhancement and saturation in emission from laser produced plasma, Laser Part. Beams. 30 (2012) 621–631.
  7. A. Hussain, X. Gao, Z. Hao, J. Lin, Combined effects of double pulses and magnetic field on emission enhancement of laser-induced breakdown spectroscopy from aluminum plasma, Optik (Stuttg). 127 (2016) 10024–10030. https://doi.org/10.1016/j.ijleo.2016.07.047.
  8. M. Akhtar, A. Jabbar, N. Ahmed, S. Mehmood, Z.A. Umar, R. Ahmed, M.A. Baig, Magnetic field-induced signal enhancement in laser-produced lead plasma, Laser Part. Beams. 37 (2019) 67–78. https://doi.org/10.1017/S0263034619000144.
  9. L.B. Guo, W. Hu, B.Y. Zhang, X.N. He, C.M. Li, Y.S. Zhou, Z.X. Cai, X.Y. Zeng, Y.F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express. 19 (2011) 14067–14075.
  10. K.S. Singh, A.K. Sharma, Time-integrated optical emission studies on laser-produced copper plasma in the presence of magnetic field in air ambient at atmospheric pressure, Appl. Phys. A Mater. Sci. Process. 123 (2017) 325. https://doi.org/10.1007/s00339-017-0953-y.
  11. X.K. Shen, Y.F. Lu, T. Gebre, H. Ling, Y.X. Han, Optical emission in magnetically confined laser-induced breakdown spectroscopy, J .Appl .Phys. 100 (2006) 053303(1–7).
  12. V.N. Rai, J.P. Singh, F.Y. Yueh, R.L. Cook, Study of optical emission from laser-produced plasma expanding across an external magnetic field, Laser Part. Beams. 21 (2003) 65–71. https://doi.org/Doi 10.1017/S0263034603211137.
  13. C. Pagano, S. Hafeez, J.G. Lunney, Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma, J. Phys. D-Appl. Phys. 42 (2009) 155205 (1–7).
  14. V.N. Rai, A.K. Rai, F.Y. Yueh, J.P. Singh, Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field, Appl. Opt. 42 (2003) 2085–2093.
  15. R.K.T. A. Neogi, 942 Instabilities in laser-produced carbon plasma expanding in a nonuniform magnetic field, Appl. Phys. B. 72 (2001) 231–235.
  16. K. Takahashi, T. Uchino, K. Ikegami, T. Sasaki, T. Kikuchi, N. Harada, Behavior of Laser Ablation Plasma during Transport in Multicusp Magnetic Field Using Different Targets for Laser Ion Source, in: Energy Procedia, Elsevier Ltd, 2017: pp. 354–358. https://doi.org/10.1016/j.egypro.2017.09.467.
  17. C. Ye, G.J. Cheng, S. Tao, B.X. Wu, Magnetic Field Effects on Laser Drilling, J. Manuf. Sci. Eng. Asme. 135 (2013) 061020(1–5).
  18. S. Wolff, I. Saxena, A preliminary study on the effect of external magnetic fields on Laser-Induced Plasma Micromachining (LIPMM), Manuf. Lett. 2 (2014) 54–59. https://doi.org/10.1016/j.mfglet.2014.02.003.
  19. M.H. Mohsin, R.A. Ismail, R.O. Mhadi, Preparation of nanostructured FeS2/Si heterojunction photodetector by laser ablation in water under effect of an external magnetic field, Appl. Phys. A. 127 (2021) 214. https://doi.org/10.1007/s00339-021-04369-0.
  20. K.K. Kim, M. Roy, H. Kwon, J.K. Song, S.M. Park, Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte, J. Appl. Phys. 117 (2015) 074302. https://doi.org/10.1063/1.4913253.
  21. K.S. Singh, A.K. Sharma, Melt ejection from copper target in air in the presence of magnetic field using nanosecond pulsed laser ablation, J. Vac. Sci. Technol. A Vacuum, Surfaces Film. 35 (2017) 031305. https://doi.org/10.1116/1.4979663.
  22. P.K. Pandey, S.L. Gupta, R.K. Thareja, Study of pulse width and magnetic field effect on laser ablated copper plasma in air, Phys. Plasmas. 22 (2015) 073301. https://doi.org/10.1063/1.4926528.
  23. K.S. Singh, A.K. Sharma, Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere, J. Appl. Phys. 119 (2016) 183301. https://doi.org/10.1063/1.4948950.
  24. O.R. Musaev, E.A. Sutter, J.M. Wrobel, M.B. Kruger, The effect of magnetic fields on the products of laser ablation, Appl. Phys. A. 122 (2016) 95 (1–5). https://doi.org/10.1007/s00339-016-9636-3.
  25. D.N. Patel, P.K. Pandey, R.K. Thareja, Brass plasmoid in external magnetic field at different air pressures, Phys. Plasmas. 20 (2013) 103503.
  26. H. Farrokhi, V. Gruzdev, H.Y. Zheng, R.S. Rawat, W. Zhou, Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses, Appl. Phys. Lett. 108 (2016) 254103. https://doi.org/10.1063/1.4954708.
  27. H. Farrokhi, V. Gruzdev, H. Zheng, W. Zhou, Fundamental mechanisms of nanosecond-laser-ablation enhancement by an axial magnetic field, J. Opt. Soc. Am. B. 36 (2019) 1091. https://doi.org/10.1364/josab.36.001091.
  28. J. Maksimovic, S.H. Ng, T. Katkus, B.C.C. Cowie, S. Juodkazis, External Field-Controlled Ablation: Magnetic Field, Nanomaterials. 9 (2019) 1662. https://doi.org/10.3390/nano9121662.
  29. O.R. Musaev, E.A. Sutter, J.M. Wrobel, M.B. Kruger, The effect of magnetic fields on the products of laser ablation, Appl. Phys. A Mater. Sci. Process. 122 (2016) 1–5. https://doi.org/10.1007/s00339-016-9636-3.
  30. K.S. Singh, A.K. Sharma, Melt ejection from copper target in air in the presence of magnetic field using nanosecond pulsed laser ablation, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 35 (2017) 031305. https://doi.org/10.1116/1.4979663.
  31. K.S. Singh, A.K. Sharma, Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere, J. Appl. Phys. 119 (2016) 183301. https://doi.org/10.1063/1.4948950.
  32. K.S. Singh, A. Khare, A.K. Sharma, Effect of uniform magnetic field on laser-produced Cu plasma and the deposited particles on the target surface, Laser Part. Beams. 35 (2017) 352. https://doi.org/10.1017/S0263034617000271.
  33. C.-C. Ho, G.-R. Tseng, Y.-J. Chang, J.-C. Hsu, C.-L. Kuo, Magnetic-field-assisted laser percussion drilling, Int. J. Adv. Manuf. Technol. 73 (2014) 329–340. https://doi.org/10.1007/s00170-014-5815-6.
  34. Y.J. Chang, C.L. Kuo, N.Y. Wang, Magnetic Assisted Laser Micromachining for Highly Reflective Metals, J. Laser Micro Nanoeng. 7 (2012) 254–259. https://doi.org/DOI 10.2961/j1mn.2012.03.0004.
  35. I. Saxena, S. Wolff, J. Cao, Unidirectional magnetic field assisted Laser Induced Plasma Micro-Machining, Manuf. Lett. 3 (2015) 1–4. https://doi.org/10.1016/J.MFGLET.2014.09.001.
  36. A. Hussain, H. Asghar, M. Tanveer, M. Zafar, Qura-Tul-Ain, Z. Nawaz, Spectral emission improvement by combining ambient pressures and magnetic field-deployment in laser-induced breakdown spectroscopy, Optik (Stuttg). 201 (2020). https://doi.org/10.1016/j.ijleo.2019.163340.
  37. Y. Wang, A. Chen, D. Zhang, Q. Wang, S. Li, Y. Jiang, M. Jin, Enhanced optical emission in laser-induced breakdown spectroscopy by combining femtosecond and nanosecond laser pulses, Phys. Plasmas. 27 (2020) 023507. https://doi.org/10.1063/1.5131772.
  38. V. Sivakumaran, A. Kumar, R.K. Singh, V. Prahlad, H.C. Joshi, Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation, Plasma Sci. Technol. 15 (2013) 204–208. https://doi.org/10.1088/1009-0630/15/3/02.
  39. R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J.D. Pedarnig, J. Heitz, Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers, Spectrochim. Acta - Part B At. Spectrosc. 65 (2010) 935–942.
  40. P.K. Diwakar, S.S. Harilal, J.R. Freeman, A. Hassanein, 4 Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta - Part B. 87 (2013) 65–73.
  41. Y. Li, D. Tian, Y. Ding, G. Yang, K. Liu, C. Wang, X. Han, A review of laser-induced breakdown spectroscopy signal enhancement, Appl. Spectrosc. Rev. 53 (2018). https://doi.org/10.1080/05704928.2017.1352509.
  42. H.C. Joshi, A. Kumar, R.K. Singh, V. Prahlad, Effect of a transverse magnetic field on the plume emission in laser-produced plasma: An atomic analysis, Spectrochim. Acta Part B. 65 (2010) 415–419.
  43. D.H. Xu, C. Song, S.Y. Zhao, X. Gao, J.Q. Lin, Magnetic Confinement Effect on Femtosecond Laser-induced Copper Plasma, Guangzi Xuebao/Acta Photonica Sin. 47 (2018). https://doi.org/10.3788/gzxb20184708.0847012.
  44. S. Amin, S. Bashir, S. Anjum, M. Akram, A. Hayat, S. Waheed, H. Iftikhar, A. Dawood, K. Mahmood, Optical emission spectroscopy of magnetically confined laser induced vanadium pentoxide (V2O5) plasma, Phys. Plasmas. 24 (2017) 083112. https://doi.org/10.1063/1.4994067.
  45. P. Liu, R. Hai, D. Wu, Q. Xiao, L. Sun, H. Ding, The enhanced effect of optical emission from laser induced breakdown spectroscopy of an Al-Li Alloy in the presence of magnetic field confinement, in: Plasma Sci. Technol., Institute of Physics Publishing, 2015: pp. 687–692. https://doi.org/10.1088/1009-0630/17/8/13.
  46. S.A. Abbasi, Z. Aziz, T.M. Khan, D. Ali, T. ul Hassan, J. Iqbal, S.U.D. Khan, A. Ahmad, R. Khan, E.M. Khan, Enhancement of optical signal and characterization of palladium plasma by magnetic field-assisted laser-induced breakdown spectroscopy, Optik (Stuttg). 224 (2020). https://doi.org/10.1016/j.ijleo.2020.165746.
  47. Y. Fu, Z. Hou, Z. Wang, Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy, Opt. Express. 24 (2016). https://doi.org/10.1364/oe.24.003055.
  48. M.R. Khan, S.U. Haq, Q. Abbas, A. Nadeem, Magnetic field confined laser-induced plasma: Improvement in sensitivity and repeatability, Spectrochim. Acta Part B At. Spectrosc. 200 (2023) 106612. https://doi.org/10.1016/J.SAB.2022.106612.
  49. J. Li, J. Wu, M. Shi, Y. Qiu, Y. Zhou, H. Sun, X. Guo, D. Wu, Y. Hang, H. Yang, X. Li, Synergy enhancement and signal uncertainty of magnetic-spatial confinement in fiber-optic laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 39 (2024) 1235–1247. https://doi.org/10.1039/D3JA00401E.
  50. L. Nagli, A. Prosnyakov, M. Gaft, Y. Raichlin, Effect of crater volume on laser-induced plasma lasers and Laser-Induced Breakdown Spectroscopy intensity, Spectrochim. Acta - Part B At. Spectrosc. 183 (2021). https://doi.org/10.1016/j.sab.2021.106246.
  51. K.S. Singh, A.K. Sharma, Effect of lens focusing distance on laser-produced copper plasma in air in the presence of static transverse magnetic field, Phys. Plasmas. 23 (2016) 123514. https://doi.org/10.1063/1.4971815.
  52. A. Kumar, R.K. Singh, J. Thomas, S. Sunil, Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe, J. Appl. Phys. 106 (2009) 043306 (1–8).
  53. J. Kiefer, J. Kiefer, Simultaneous Application of Raman and Laser-Induced Breakdown Spectroscopy in the Gas Phase with a Single Laser and Detector, Appl. Spectrosc. Vol. 78, Issue 4, Pp. 438-441. 78 (2024) 438–441. https://doi.org/10.1177/00037028241227459.
  54. H.B. Andrews, M.Z. Martin, A.M. Wymore, U.C. Kalluri, Rapid in situ nutrient element distribution in plants and soils using laser-induced breakdown spectroscopy (LIBS), Plant Soil. 495 (2024) 3–12. https://doi.org/10.1007/S11104-023-05988-7/METRICS.
  55. D. Wu, L. Sun, R. Hai, J. Liu, Y. Hao, X. Yu, C. Li, C. Feng, P. Liu, H. Ding, Influence of transverse magnetic field on plume dynamics and optical emission of nanosecond laser produced tungsten plasma in vacuum, Spectrochim. Acta - Part B At. Spectrosc. 169 (2020) 105882. https://doi.org/10.1016/j.sab.2020.105882.
  56. A. Mondal, R.K. Singh, V. Chaudhari, H.C. Joshi, Effect of magnetic field on the lateral interaction of plasma plumes, Phys. Plasmas. 27 (2020) 093109. https://doi.org/10.1063/5.0006647.
  57. W. Zhou, C. Zhang, Y. Liu, Y. Li, L. Jiang, L. Ren, X. Chu, Magnetic field assisted laser fabrication and electrical characterizations of metal dry Biolectrode with surface microstructures, Biomed. Microdevices. 21 (2019) 1–12. https://doi.org/10.1007/s10544-019-0422-9.
  58. A. Dawood, S. Bashir, N.A. Chishti, M.A. Khan, A. Hayat, Magnetic field effect on plasma parameters and surface modification of laser-irradiated Cu-alloy, Laser Part. Beams. 36 (2018) 261–275. https://doi.org/10.1017/S0263034618000137.
  59. K.S. Singh, A.K. Sharma, Multi-structured temporal behavior of neutral copper transitions in laser-produced plasma in the presence of variable transverse static magnetic field, Phys. Plasmas. 23 (2016) 013304. https://doi.org/10.1063/1.4939883.
  60. A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, Q.S. Ahmad, Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma, Appl. Phys. B. 122 (2016) 63. https://doi.org/10.1007/s00340-016-6333-z.
  61. A. Neogi, V. Narayanan, R.K. Thareja, Optical emission studies of laser ablated carbon plasma in a curved magnetic field, Phys. Lett. A. 258 (1999) 135–140.
  62. H. Lan, X.B. Wang, H. Chen, D.L. Zuo, P.X. Lu, Influence of a magnetic field on laser-produced Sn plasma, Plasma Sources Sci. Technol. 24 (2015) 055012 (1–7).
  63. L. Godbert-Mouret, M. Koubiti, R. Stamm, K. Touati, B. Felts, H. Capes, Y. Corre, R. Guirlet, C. De Michelis, 986 Spectroscopy of magnetized plasmas, J. Quant. Spectrosc. Radiat. Transf. 71 (2001) 365–372. https://doi.org/Doi 10.1016/S0022-4073(01)00082-6.
  64. D.N. Stratis, K.L. Eland, S.M. Angel, 987 Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma, Appl. Spectrosc. 55 (2001) 1297–1303.
  65. M. Hanif, M. Salik, M.A. Baig, Quantitative studies of copper plasma using laser induced breakdown spectroscopy, Opt. Lasers Eng. 49 (2011) 1456–1461.
  66. R.K.T. A.K. Sharma, 988 Plume dynamics of laser-produced aluminum plasma in ambient nitrogen, Appl. Surf. Sci. 243 (2005) 68–75.
  67. M.S. Raju, R.K. Singh, P. Gopinath, A. Kumar, Influence of magnetic field on laser-produced barium plasmas: Spectral and dynamic behaviour of neutral and ionic species, J. Appl. Phys. 116 (2014) 153301 (1–11).
  68. H.R. Griem, 990 Plasma Spectroscopy, McGraw Hill Book Company, USA, 1964.
  69. W.Lochte-Holtgreven, 991 Plasma Diagnostics, AIP Press, USA, 1995.
  70. H.R. Griem, 992 Validity of Local Thermal Equilibrium in Plasma Spectroscopy, Phys. Rev. 131 (1963) 1170–1176.
  71. D.N. Patel, P.K. Pandey, R.K. Thareja, Stoichiometry of laser ablated brass nanoparticles in water and air, Appl. Opt. 52 (2013) 7592–7601.
  72. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, Characterization of laser-ablation plasmas, J. Phys. B At. Mol. Opt. Phys. 32 (1999) R131. https://doi.org/10.1088/0953-4075/32/14/201.
  73. F.P. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, G. Scamarcio, Laser ablation dynamics in metals: The thermal regime, Appl. Phys. Lett. 101 (2012) 011103. https://doi.org/10.1063/1.4732507.
  74. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Laser ablation for analytical sampling: what can we learn from modeling?, Spectrochim. Acta Part B At. Spectrosc. 58 (2003) 1867–1893. https://doi.org/10.1016/j.sab.2003.08.004.
  75. C.C. Ho, G.R. Tseng, Y.J. Chang, J.C. Hsu, C.L. Kuo, 963 Magnetic-field-assisted laser percussion drilling, Int. J. Adv. Manuf. Technol. 73 (2014) 329–340.
  76. A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, A. Santagata, R. Teghil, 6 Laser Induced Breakdown Spectroscopy methodology for the analysis of copper-based-alloys used in ancient artworks, Spectrochim. Acta Part B. 63 (2008) 585–590. https://doi.org/10.1016/j.sab.2008.03.006.
  77. C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, 5 Laser induced breakdown spectroscopy, J. Braz. Chem. Soc. 18 (2007) 463–512.
  78. G. Shukla, A. Khare, Spectroscopic studies of laser ablated ZnO plasma and correlation with pulsed laser deposited ZnO thin film properties, Laser Part. Beams. 28 (2010) 149. https://doi.org/10.1017/S0263034610000029.
  79. E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, E. Wintner, 965 Laser-induced optical breakdown applied for laser spark ignition, Laser Part. Beams. 28 (2010) 109 119. https://doi.org/10.1017/S0263034609990668.
  80. A. Roy, S.S. Harilal, S.M. Hassan, A. Endo, T. Mocek, A. Hassanein, 967 Collimation of laser-produced plasmas using axial magnetic field, Laser Part. Beams. 33 (2015) 175–182. https://doi.org/10.1017/S0263034615000075.
  81. H. Iftikhar, S. Bashir, A. Dawood, M. Akram, A. Hayat, K. Mahmood, A. Zaheer, S. Amin, F. Murtaza, Magnetic field effect on laser-induced breakdown spectroscopy and surface modifications of germanium at various fluences, Laser Part. Beams. 35 (2017) 159–169. https://doi.org/10.1017/S0263034617000039.
  82. V.N. Rai, M. Shukla, H.C. Pant, 969 Some studies on picosecond laser produced plasma expanding across a uniform external magnetic field, Laser Part. Beams. 16 (2009) 431–443.
  83. J.A. Bittencourt, 970 Fundamentals of Plasma Physics, Springer, New York, 2004.
  84. A. Hussain, Q. Li, Z. Hao, X. Gao, J. Lin, The effect of an external magnetic field on the plume expansion dynamics of laser-induced aluminum plasma, in: Plasma Sci. Technol., Institute of Physics Publishing, 2015: pp. 693–698. https://doi.org/10.1088/1009-0630/17/8/14.
  85. M.S. Raju, R.K. Singh, A. Kumar, P. Gopinath, Diamagnetic cavitization of laser-produced barium plasma in transverse magnetic field, Opt. Lett. 40 (2015) 2185–2188.
  86. C. Pagano, S. Hafeez, J.G. Lunney, Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma, J. Phys. D. Appl. Phys. 42 (2009). https://doi.org/10.1088/0022-3727/42/15/155205.
  87. A. Kumar, S. George, R.K. Singh, H. Joshi, V.P.N. Nampoori, Image analysis of expanding laser-produced lithium plasma plume in variable transverse magnetic field, Laser Part. Beams. 29 (2011) 241–247. https://doi.org/Doi 10.1017/S0263034611000218.
  88. P.K. Pandey, R.K. Thareja, Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field, J. Appl. Phys. 109 (2011) 074901(1–9).
  89. D.H. Sharp, An overview of Rayleigh-Taylor instability, Phys. D Nonlinear Phenom. 12 (1984) 3–18. https://doi.org/10.1016/0167-2789(84)90510-4.
  90. A.K. Sharma, R.K. Thareja, Anisotropic emission in laser-produced aluminum plasma in ambient nitrogen, Appl. Surf. Sci. 253 (2007) 3113–3121. https://doi.org/10.1016/j.apsusc.2006.07.014.
  91. R.K. THAREJA, A.K. SHARMA, Reactive pulsed laser ablation: Plasma studies, Laser Part. Beams. 24 (2006) 311–320. https://doi.org/10.1017/S0263034606060484.
  92. J.D. Hey, Criteria for local thermal equilibrium in non-hydrogenic plasmas, J. Quant. Spectrosc. Radiat. Transf. 16 (1976) 69–75.
  93. V.N. Rai, H. Zhang, F.Y. Yueh, J.P. Singh, A. Kumar, Effect of steady magnetic field on laser-induced breakdown spectroscopy., Appl. Opt. 42 (2003) 3662–3669.
  94. D.H. Kim, Y.H. Kihm, S.J. Choi, J.J. Choi, J.J. Yoh, The application of magnetic field at low pressure for optimal laser-induced plasma spectroscopy, Spectrochim. Acta - Part B At. Spectrosc. 110 (2015) 7–12. https://doi.org/10.1016/j.sab.2015.05.006.
  95. A. Hussain, H. Asghar, T. Iqbal, M. Ishfaq, R.M. Shahbaz, Q. Riaz, Improving the spectral intensity of aluminum plasma by applied-magnetic field in laser-induced breakdown spectroscopy, Optik (Stuttg). 251 (2022). https://doi.org/10.1016/j.ijleo.2021.168220.
  96. N.A. Chishti, S. Bashir, A. Dawood, M.A. Khan, Laser-induced breakdown spectroscopy of aluminum plasma in the absence and presence of magnetic field, Appl. Opt. 58 (2019). https://doi.org/10.1364/ao.58.001110.
  97. A. Kumar, R.K. Singh, H. Joshi, Effect of transverse magnetic field on the laser-blow-off plasma plume emission in the presence of ambient gas, Spectrochim. Acta Part B. 66 (2011) 444–450.
  98. P. Liu, D. Wu, L. Sun, R. Hai, J. Liu, H. Ding, Magnetic field selective enhancement of Li I lines comparing Li II line in laser ablated lithium plasma at 10− 2 mbar air ambient gas, Spectrochim. Acta - Part B At. Spectrosc. 137 (2017). https://doi.org/10.1016/j.sab.2017.09.004.
  99. S. Waheed, S. Bashir, A. Dawood, S. Anjum, M. Akram, A. Hayat, S. Amin, A. Zaheer, *Effect of magnetic field on laser induced breakdown spectroscopy of zirconium dioxide (ZrO2) plasma, Optik (Stuttg). 140 (2017). https://doi.org/10.1016/j.ijleo.2017.04.046.
  100. M. Akhtar, A. Jabbar, N. Ahmed, S. Mahmood, Z.A. Umar, R. Ahmed, M.A. Baig, *Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field, Appl. Phys. B Lasers Opt. 125 (2019). https://doi.org/10.1007/s00340-019-7225-9.
  101. M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, M.A. Baig, *Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy, Spectrochim. Acta - Part B At. Spectrosc. 148 (2018). https://doi.org/10.1016/j.sab.2018.06.016.