Vol. 23 No. 4 (2024): Upcoming Articles
Research Articles

DFT Studies on Excited State Geometry, Vibrational Modes, NMR, Molecular Orbital and Mulliken Charges of Laser Dye

Shivraj G Gounhalli
Smt. Veeramma Gangasiri College for Women Kalaburagi
Bhagyalaxmi I. B
Smt. Veeramma Gangasiri College for Women Kalaburagi
Bio
R. B. Konda
Smt. Veeramma Gangasiri College for Women Kalaburagi
Bio
Shivaleela B
Gulbarga university Kalaburagi 
Bio

Published 2024-12-23

Keywords

  • DFT,
  • TD-DFT,
  • Laser dye,
  • HOMO-LUMO,
  • ESP

Abstract

The laser dye 2, 5-diphenyl-1, 3, 4-oxadiazole (PPD), which has many uses in science and technology, has been the topic of DFT investigation using the Gaussian 16. Laser dye geometry has been optimised at the 6-311G++(d, p)/B3LYP basis set using the DFT approach. A graphic representation of the overall energy variation as a function of optimisation phases is shown. The DFT approach yielded a ground state dipole moment of 3.61 Debye. A computational technique called TD-DFT at 6-311++G (d, p)/B3LYP basis set has been utilised to analyse the UV-visible spectra of laser dye in ethanol. The eccentric state geometry yielded parameters such as absorption maxima, oscillator strength, and excited-state energy. The dipole moment in the excited state is about 5.11 Debye. The excited state's dipole moment is larger than the ground state's. The DFT and TD-DFT techniques were used to determine the Mulliken atomic charges. Chemical shifts and vibrational modes have been studied using NMR and IR spectroscopy, respectively. Atomic charges and electron densities can be used to determine a molecule's dipole moment and charge distribution. Given the small HOMO-LUMO energy gap, the molecule should be soft. The electrostatic potential map is used to identify the molecule's electrophilic and nucleophilic locations. According to these investigations, the molecule might be used in optoelectronics.

References

  1. M. A. Robb, “New Chemistry with Gaussian 16 & GaussView 6,” Jan. 1916, Accessed: Sep. 25, 2022. [Online]. Available: http://spiral.imperial.ac.uk/handle/10044/1/57650
  2. Shivraj G. G, Shivaleela B. and S. M. Hanagodimath, Spectroscopic analysis of NMR, IR, Raman and UV-Visible, HOMO-LUMO, ESP and Mulliken charges of coumarin derivative by density functional theory, Journal of the Maharaja Sayajirao University of Baroda, vol.55, no. 1 (XIV) pp. 213-229, 2021.
  3. D. S. Biradar, B. Siddlingeshwar, and S. M. Hanagodimath, “Estimation of ground and excited state dipole moments of some laser dyes,” J. Mol. Struct., vol. 875, no. 1–3, pp. 108–112, 2008.
  4. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
  5. B. Siddlingeshwar and S. M. Hanagodimath, “Estimation of the ground and the first excited singlet-state dipole moments of 1, 4-disubstituted anthraquinone dyes by the solvatochromic method,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 75, no. 4, pp. 1203–1210, 2010.
  6. K. Carthigayan, S. Xavier, and S. Periandy, “HOMO–LUMO, UV, NLO, NMR and vibrational analysis of 3-methyl-1-phenylpyrazole using FT-IR, FT-RAMAN FT-NMR spectra and HF-DFT computational methods,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 142, pp. 350–363, May 2015, doi: 10.1016/j.saa.2015.02.035.
  7. C. G. Renuka, K. Shivashankar, P. Boregowda, S. S. Bellad, M. V. Muregendrappa and Y. F. Nadaf, J. Solut. Chem., vol. 46, no. 8, pp. 1535–1555, Aug. 2017, doi: 10.1007/s10953-017-0661-4.
  8. Y. G. Sıdır, C. Aslan, H. Berber, and İ. Sıdır, “The electronic structure, solvatochromism, and electric dipole moments of new Schiff base derivatives using absorbance and fluorescence spectra,” Struct. Chem., vol. 30, no. 3, pp. 835–851, Jun. 2019, doi: 10.1007/s11224-018-1228-8.
  9. Y. F. Nadaf, G. N. Sushma, M. Suma, and W. Sultana, “Spectroscopic, molecular structure, FMO and thermodynamic properties of 11-chloro-12 (methylsulfanyl) quinoxaline molecule using DFT,” J. Adv. Sci. Res., vol. 13, no. 04, pp. 51–58, 2022.
  10. Shivraj G. G, Shivaleela B. and S. M. Hanagodimath, Comparative study of NMR, IR, Raman spectroscopy, HOMO-LUMO surfaces of benzofuran and coumarin derivative in vacuum and methanol, Journal of the Maharaja Sayajirao University of Baroda, vol.56, no. 2 (I) pp. 169-186, 2022.
  11. H. R. Deepa, S. Chandrasekhar, and J. Thipperudrappa, “Investigation of FRET from organic dyes to silver nanoparticles and structural properties using the DFT/TD-DFT approach,” Chem. Phys. Impact, vol. 4, p. 100075, 2022.
  12. S. M. Hiremath, S. S. Khemalapure, C. S. Hiremath, A. S. Patil, and M. Basanagouda, “Quantum chemical computational and spectroscopic (IR, Raman, NMR, and UV) studies on the 5-(5-methoxy-benzofuran-3-ylmethyl)-3H-[1, 3, 4] oxadiazole-2-thione,” J. Mol. Struct., vol. 1210, p. 128041, 2020.