A Theoretical Study of Coumarin Derivatives: Exploring DSSC, NLO Properties and Pharmacokinetics
Published 2025-04-05
Keywords
- Coumarin derivatives,
- DFT,
- NLO,
- NBO,
- ADMET
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
This study presents a comprehensive theoretical analysis of the coumarin derivatives 1-(4-Methoxy-phenoxymethyl)-benzo[f]chromen-3-one (4MPBCO) and 6-Methoxy-4-(4-methoxy-phenoxymethyl)-chromen-2-one (6M4MPC) using density functional theory (DFT). The various molecular properties of these molecules are explored through the examination of geometrical parameters, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) maps and natural bonding orbitals (NBO). The HOMO-LUMO energies were calculated to assess the suitability of these molecules for dye-sensitized solar cell (DSSC) applications. In addition, the non-linear optical (NLO) parameters were evaluated to determine their potential for NLO applications. Furthermore, the physicochemical and ADMET properties were computed to examine the molecule's suitability for pharmacokinetic applications.
References
- Nagaraja, D., Melavanki, R. M., Patil, N. R., Kusanur, R. A., Thipperudrappa, J., & Sanningannavar, F. M. (2013). Quenching of the excitation energy of coumarin dyes by aniline. Canadian Journal of Physics, 91(11), 976-980. https://doi.org/10.1139/cjp-2013-0009
- Emus-Medina, A., Contreras-Angulo, L. A., Ambriz-Perez, D. L., Vazquez-Olivo, G., & Heredia, J. B. (2023). UV light stress induces phenolic compounds in plants. In Plant phenolics in abiotic stress management (pp. 415-440). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6426-8_19
- Mannekutla, J. R., Mulimani, B. G., & Inamdar, S. R. (2008). Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(2), 419-426. https://doi.org/10.1016/j.saa.2007.04.016
- Pramod, A. G., Nadaf, Y. F., & Renuka, C. G. (2019). Synthesis, photophysical, quantum chemical investigation, linear and non-linear optical properties of coumarin derivative: Optoelectronic and optical limiting application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117288. https://doi.org/10.1016/j.saa.2019.117288
- Bansal, Y., Sethi, P., & Bansal, G. (2013). Coumarin: a potential nucleus for anti-inflammatory molecules. Medicinal Chemistry Research, 22, 3049-3060.
- Kostova, I., Bhatia, S., Grigorov, P., Balkansky, S., S Parmar, V., K Prasad, A., & Saso, L. (2011). Coumarins as antioxidants. Current medicinal chemistry, 18(25), 3929-3951.https://doi.org/10.2174/092986711803414395
- Wu, Y., Xu, J., Liu, Y., Zeng, Y., & Wu, G. (2020). A review on anti-tumor mechanisms of coumarins. Frontiers in oncology, 10, 592853.https://doi.org/10.3389/fonc.2020.592853
- Li, H., Yao, Y., & Li, L. (2017). Coumarins as potential antidiabetic agents. Journal of Pharmacy and Pharmacology, 69(10), 1253-1264.https://doi.org/10.1111/jphp.12774
- Smyth, T., Ramachandran, V. N., & Smyth, W. F. (2009). A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. International journal of antimicrobial agents, 33(5), 421-426.https://doi.org/10.1016/j.ijantimicag.2008.10.022
- Flores-Morales, V., Villasana-Ruíz, A. P., Garza-Veloz, I., González-Delgado, S., & Martinez-Fierro, M. L. (2023). Therapeutic effects of coumarins with different substitution patterns. Molecules, 28(5), 2413.https://doi.org/10.3390/molecules28052413
- Balewski, Ł., Szulta, S., Jalińska, A., &Kornicka, A. (2021). A mini-review: Recent advances in coumarin-metal complexes with biological properties. Frontiers in Chemistry, 9, 781779.https://doi.org/10.3389/fchem.2021.781779
- Zhang, G., Zheng, H., Guo, M., Du, L., Liu, G., & Wang, P. (2016). Synthesis of polymeric fluorescent brightener based on coumarin and its performances on paper as light stabilizer, fluorescent brightener and surface sizing agent. Applied Surface Science, 367, 167-173.https://doi.org/10.1016/j.apsusc.2016.01.110
- Katerinopoulos, H. E. (2004). The coumarin moiety as chromophore of fluorescent ion indicators in biological systems. Current pharmaceutical design, 10(30), 3835-3852.https://doi.org/10.2174/1381612043382666
- Arora, R. B., & Mathur, C. N. (1963). Relationship between structure and anti‐coagulant activity of coumarin derivatives. British journal of pharmacology and chemotherapy, 20(1), 29-35.https://doi.org/10.1111/j.1476-5381.1963.tb01294.x
- Kasperkiewicz, K., Erkiert-Polguj, A., & Budzisz, E. (2016). Sunscreening and photosensitizing properties of coumarins and their derivatives. Letters in Drug Design & Discovery, 13(5), 465-474.
- Xu, Z., Chen, Q., Zhang, Y., & Liang, C. (2021). Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia, 150, 104863.https://doi.org/10.1016/j.fitote.2021.104863
- Emami, S., &Dadashpour, S. (2015). Current developments of coumarin-based anti-cancer agents in medicinal chemistry. European Journal of Medicinal Chemistry, 102, 611-630.https://doi.org/10.1016/j.ejmech.2015.08.033
- Shkoor, M., Thotathil, V., Al-Zoubi, R. M., Su, H. L., & Bani-Yaseen, A. D. (2023). Combined experimental and computational investigations of the fluorosolvatochromism of chromeno [4, 3-b] pyridine derivatives: Effect of the methoxy substitution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 303, 123210.https://doi.org/10.1016/j.saa.2023.123210
- Gowda, R., Gowda, K. A., Basanagouda, M., & Kulkarni, M. V. (2011). 6-Chloro-4-(4-methylphenoxymethyl)-2H-chromen-2-one. Acta Crystallographica Section E: Structure Reports Online, 67(7), o1650-o1650. https://doi.org/10.1107%2FS1600536811019258
- Frisch, A. (2009). gaussian 09W Reference. Wallingford, USA, 25p, 470.
- Dennington, R., Keith, T., & Millam, J. (2009). GaussView, version 5.
- Liu, Y., Zhao, J., Li, F., & Chen, Z. (2013). Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Journal of computational chemistry, 34(2), 121-131. https://doi.org/10.1002/jcc.23112
- Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., & Weinhold, F. (1998). University of Wisconsin. Madison, NBO Version, 3. https://doi.org/10.1515/9783110660074
- Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry, 33(5), 580-592. https://doi.org/10.1002/jcc.22885].
- Jomroz, M. H. (2004). ’Vibrational Energy distribution Analysis VEDA4 (Warsaw)Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717. https://doi.org/10.1038/srep42717
- Mani, S., Swargiary, G., Gulati, S., Gupta, S., & Jindal, D. (2023). Molecular docking and ADMET studies to predict the anti-breast cancer effect of aloin by targeting estrogen and progesterone receptors. Materials Today: Proceedings, 80, 2378-2384. https://doi.org/10.1016/j.matpr.2021.06.362]
- Tsukerblat, B. S. (2006). Group theory in chemistry and spectroscopy: a simple guide to advanced usage. Courier Corporation.
- Raja, M., Muhamed, R. R., Muthu, S., & Suresh, M. (2017). Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene) semicarbazide. Journal of Molecular Structure, 1141, 284-298. https://doi.org/10.1016/j.molstruc.2017.03.117
- Lanke, S. K., & Sekar, N. (2016). Coumarin push-pull NLOphores with red emission: solvatochromic and theoretical approach. Journal of fluorescence, 26, 949-962. https://doi.org/10.1007/s10895-016-1783-6
- Khalid, M., Ullah, M. A., Adeel, M., Khan, M. U., Tahir, M. N., & Braga, A. A. C. (2019). Synthesis, crystal structure analysis, spectral IR, UV–Vis, NMR assessments, electronic and nonlinear optical properties of potent quinoline based derivatives: Interplay of experimental and DFT study. Journal of Saudi Chemical Society, 23(5), 546-560. https://doi.org/10.1016/j.jscs.2018.09.006
- Renuka, U., Subhani Khanam Nehal, N. M. Mallikarjuna, K. Vibha, S. M. Kumar, H. M. Kumar, and Thipperudrappa Javuku. "Computational and Spectroscopic Study of Newly Synthesized Bio-Active Azo Dyes: DFT, Solvatochromism, and Preferential Solvation." CHEMISTRYSELECT 9, no. 48 (2024).
- Kalita, D. J., & Deka, R(2024). Optimizing Anchoring Groups in D-Π-A Sensitizers for Coumarin-Benzothiazole Based Dsscs: A Dft/Tddft Study. Tddft Study. https://dx.doi.org/10.2139/ssrn.5019494
- Choudhary, V., Bhatt, A., Dash, D., & Sharma, N. (2019). DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2‐chloridophenylacetohydroxamate complexes. Journal of computational chemistry, 40(27), 2354-2363. https://doi.org/10.1002/jcc.26012
- Bulat, F. A., Murray, J. S., & Politzer, P. (2021). Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy. Computational and Theoretical Chemistry, 1199, 113192. https://doi.org/10.1016/j.comptc.2021.113192
- Nadaf, Y. F., Sushma, G. N., Suma, M., & Sultana, W. (2022). Spectroscopic, Molecular Structure, FMO And Thermodynamic Properties of 11-Chloro-12 (Methylsulfanyl) Quinoxaline Molecule using DFT. Journal of Advanced Scientific Research, 13(04), 51-58. https://doi.org/10.55218/JASR.202213410
- Ramesh, G., & Reddy, B. V. (2023). Investigation of barrier potential, structure (monomer & dimer), chemical reactivity, NLO, MEP, and NPA analysis of pyrrole-2-carboxaldehyde using quantum chemical calculations. Polycyclic Aromatic Compounds, 43(5), 4216-4230. https://doi.org/10.1080/10406638.2022.2086889
- Putz, M. V. (2006). Systematic formulations for electronegativity and hardness and their atomic scales within density functional softness theory. International Journal of Quantum Chemistry, 106(2), 361-389. https://doi.org/10.1002/qua.20787
- Sessa, F., & Rahm, M. (2022). Electronegativity equilibration. The Journal of Physical Chemistry A, 126(32), 5472-5482. https://doi.org/10.1021/acs.jpca.2c03814
- Agwamba, Ernest C., Akaninyene D. Udoikono, Hitler Louis, Esther U. Udoh, Innocent Benjamin, Azuaga T. Igbalagh, Henry O. Edet, Emmanuel U. Ejiofor, and Ugi B. Ushaka. "Synthesis, characterization, DFT studies, and molecular modeling of azo dye derivatives as potential candidate for trypanosomiasis treatment." Chemical Physics Impact 4 (2022): 100076.
- R., Annoji Reddy., Vibha., Prachalith, N. C., Ravikantha, M. N., Shilpa, K. G., & Thipperudrappa, J. (2023). Theoretical and Experimental Investigations of antibiotic agents Sulfamethoxazole (SMX) and Trimethoprim (TMP) by Density Functional Theory. Mapana Journal of Sciences, 22(1). https://doi.org/10.12723/mjs.64.10
- Bhavya, P., Melavanki, R., Sharma, K., Kusanur, R., Patil, N. R., & Thipperudrappa, J. (2019). Exploring the spectral features and quantum chemical computations of a novel biologically active heterocyclic class of compound 2MEFPBA dye: Experimental and theoretical approach. Chemical data collections, 19, 100182. https://doi.org/10.1016/j.cdc.2019.100182
- Prachalith, N. C., Vibha, K., Shilpa, K. G., Ravikantha, M. N., Thipperudrappa, J., & Khadke, U. V. (2023). Quantum computations of non-steroidal anti-inflammatory drug molecules using Density Functional Theory. Chemical Physics Impact, 7, 100317. https://doi.org/10.1016/j.chphi.2023.100317
- Landis, C. R., & Weinhold, F. (2014). The NBO view of chemical bonding. The Chemical Bond: Fundamental Aspects of Chemical Bonding, 91-120. https://doi.org/10.1002/9783527664696.ch3
- Patil, D. S., Avhad, K. C., & Sekar, N. (2018). Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties–DFT approach. Computational and Theoretical Chemistry, 1138, 75-83. https://doi.org/10.1016/j.comptc.2018.06.006
- Vibha, K., Prachalith, N. C., Reddy, R. A., Ravikantha, M. N., & Thipperudrappa, J. Computational studies on sulfonamide drug molecules by density functional theory. Chemical Physics Impact. https://doi.org/10.1016/j.chphi.2022.100147
- Siddiqui, N., & Javed, S. (2021). Quantum computational, spectroscopic investigations on ampyra (4-aminopyridine) by dft/td-dft with different solvents and molecular docking studies. Journal of Molecular Structure, 1224, 129021. https://doi.org/10.1016/j.molstruc.2020.129021
- Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry, 58(9), 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104
- Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717. https://doi.org/10.1038/srep42717
- Farihi, A., Bouhrim, M., Chigr, F., Elbouzidi, A., Bencheikh, N., Zrouri, H., Nasr, F.A., Parvez, M.K., Alahdab, A. and Ahami, A.O.T., 2023. Exploring Medicinal Herbs’ Therapeutic Potential and Molecular Docking Analysis for Compounds as Potential Inhibitors of Human Acetylcholinesterase in Alzheimer’s Disease Treatment. Medicina, 59(10), p.1812. https://doi.org/10.3390/medicina59101812
- Fathallah, N., El Deeb, M., Rabea, A. A., Almehmady, A. M., Alkharobi, H., Elhady, S. S., & Khalil, N. (2023). Ultra-Performance Liquid Chromatography Coupled with Mass Metabolic Profiling of Ammi majus Roots as Waste Product with Isolation and Assessment of Oral Mucosal Toxicity of Its Psoralen Component Xanthotoxin. Metabolites, 13(10), 1044. https://doi.org/10.3390/metabo13101044
- Islamoğlu, F. (2024). Molecular docking, bioactivity, adme, toxicity risks, and quantum mechanical parameters of some 1, 2-dihydroquinoline derivatives were calculated theoretically for investigation of its use as a pharmaceutical active ingredient in the treatment of multiple sclerosis (MS). Prospects in Pharmaceutical Sciences, 22(4), 168-187. https://doi.org/10.56782/pps.261