Vol. 24 No. 1 (2025): Mapana Journal of Sciences
Research Articles

A Theoretical Study of Coumarin Derivatives: Exploring DSSC, NLO Properties and Pharmacokinetics

Subhani Khanam Nehal .
Department of Studies in Physics, Vijayanagara Sri Krishnadeveraya University, Ballari – 583105, Karnataka, India.
Renuka U
Department of Studies in Physics, Vijayanagara Sri Krishnadeveraya University, Ballari – 583105, Karnataka, India.
Mahanthesh M Basanagouda
P.G. Department of Chemistry, P.C. Jabin Science College, Hubli - 580031, Karnataka, India.
Suresh Kumar H M
Department of Physics, Siddaganga Institute of Technology, Tumakuru-572103, Karnataka, India.
Thipperudrappa Javuku
Department of Studies in Physics, Vijayanagara Sri Krishnadeveraya University, Ballari – 583105, Karnataka, India

Published 2025-04-05

Keywords

  • Coumarin derivatives,
  • DFT,
  • NLO,
  • NBO,
  • ADMET

Abstract

This study presents a comprehensive theoretical analysis of the coumarin derivatives 1-(4-Methoxy-phenoxymethyl)-benzo[f]chromen-3-one (4MPBCO) and 6-Methoxy-4-(4-methoxy-phenoxymethyl)-chromen-2-one (6M4MPC) using density functional theory (DFT). The various molecular properties of these molecules are explored through the examination of geometrical parameters, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) maps and natural bonding orbitals (NBO). The HOMO-LUMO energies were calculated to assess the suitability of these molecules for dye-sensitized solar cell (DSSC) applications. In addition, the non-linear optical (NLO) parameters were evaluated to determine their potential for NLO applications. Furthermore, the physicochemical and ADMET properties were computed to examine the molecule's suitability for pharmacokinetic applications.

References

  1. Nagaraja, D., Melavanki, R. M., Patil, N. R., Kusanur, R. A., Thipperudrappa, J., & Sanningannavar, F. M. (2013). Quenching of the excitation energy of coumarin dyes by aniline. Canadian Journal of Physics, 91(11), 976-980. https://doi.org/10.1139/cjp-2013-0009
  2. Emus-Medina, A., Contreras-Angulo, L. A., Ambriz-Perez, D. L., Vazquez-Olivo, G., & Heredia, J. B. (2023). UV light stress induces phenolic compounds in plants. In Plant phenolics in abiotic stress management (pp. 415-440). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6426-8_19
  3. Mannekutla, J. R., Mulimani, B. G., & Inamdar, S. R. (2008). Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(2), 419-426. https://doi.org/10.1016/j.saa.2007.04.016
  4. Pramod, A. G., Nadaf, Y. F., & Renuka, C. G. (2019). Synthesis, photophysical, quantum chemical investigation, linear and non-linear optical properties of coumarin derivative: Optoelectronic and optical limiting application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117288. https://doi.org/10.1016/j.saa.2019.117288
  5. Bansal, Y., Sethi, P., & Bansal, G. (2013). Coumarin: a potential nucleus for anti-inflammatory molecules. Medicinal Chemistry Research, 22, 3049-3060.
  6. Kostova, I., Bhatia, S., Grigorov, P., Balkansky, S., S Parmar, V., K Prasad, A., & Saso, L. (2011). Coumarins as antioxidants. Current medicinal chemistry, 18(25), 3929-3951.https://doi.org/10.2174/092986711803414395
  7. Wu, Y., Xu, J., Liu, Y., Zeng, Y., & Wu, G. (2020). A review on anti-tumor mechanisms of coumarins. Frontiers in oncology, 10, 592853.https://doi.org/10.3389/fonc.2020.592853
  8. Li, H., Yao, Y., & Li, L. (2017). Coumarins as potential antidiabetic agents. Journal of Pharmacy and Pharmacology, 69(10), 1253-1264.https://doi.org/10.1111/jphp.12774
  9. Smyth, T., Ramachandran, V. N., & Smyth, W. F. (2009). A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. International journal of antimicrobial agents, 33(5), 421-426.https://doi.org/10.1016/j.ijantimicag.2008.10.022
  10. Flores-Morales, V., Villasana-Ruíz, A. P., Garza-Veloz, I., González-Delgado, S., & Martinez-Fierro, M. L. (2023). Therapeutic effects of coumarins with different substitution patterns. Molecules, 28(5), 2413.https://doi.org/10.3390/molecules28052413
  11. Balewski, Ł., Szulta, S., Jalińska, A., &Kornicka, A. (2021). A mini-review: Recent advances in coumarin-metal complexes with biological properties. Frontiers in Chemistry, 9, 781779.https://doi.org/10.3389/fchem.2021.781779
  12. Zhang, G., Zheng, H., Guo, M., Du, L., Liu, G., & Wang, P. (2016). Synthesis of polymeric fluorescent brightener based on coumarin and its performances on paper as light stabilizer, fluorescent brightener and surface sizing agent. Applied Surface Science, 367, 167-173.https://doi.org/10.1016/j.apsusc.2016.01.110
  13. Katerinopoulos, H. E. (2004). The coumarin moiety as chromophore of fluorescent ion indicators in biological systems. Current pharmaceutical design, 10(30), 3835-3852.https://doi.org/10.2174/1381612043382666
  14. Arora, R. B., & Mathur, C. N. (1963). Relationship between structure and anti‐coagulant activity of coumarin derivatives. British journal of pharmacology and chemotherapy, 20(1), 29-35.https://doi.org/10.1111/j.1476-5381.1963.tb01294.x
  15. Kasperkiewicz, K., Erkiert-Polguj, A., & Budzisz, E. (2016). Sunscreening and photosensitizing properties of coumarins and their derivatives. Letters in Drug Design & Discovery, 13(5), 465-474.
  16. Xu, Z., Chen, Q., Zhang, Y., & Liang, C. (2021). Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia, 150, 104863.https://doi.org/10.1016/j.fitote.2021.104863
  17. Emami, S., &Dadashpour, S. (2015). Current developments of coumarin-based anti-cancer agents in medicinal chemistry. European Journal of Medicinal Chemistry, 102, 611-630.https://doi.org/10.1016/j.ejmech.2015.08.033
  18. Shkoor, M., Thotathil, V., Al-Zoubi, R. M., Su, H. L., & Bani-Yaseen, A. D. (2023). Combined experimental and computational investigations of the fluorosolvatochromism of chromeno [4, 3-b] pyridine derivatives: Effect of the methoxy substitution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 303, 123210.https://doi.org/10.1016/j.saa.2023.123210
  19. Gowda, R., Gowda, K. A., Basanagouda, M., & Kulkarni, M. V. (2011). 6-Chloro-4-(4-methylphenoxymethyl)-2H-chromen-2-one. Acta Crystallographica Section E: Structure Reports Online, 67(7), o1650-o1650. https://doi.org/10.1107%2FS1600536811019258
  20. Frisch, A. (2009). gaussian 09W Reference. Wallingford, USA, 25p, 470.
  21. Dennington, R., Keith, T., & Millam, J. (2009). GaussView, version 5.
  22. Liu, Y., Zhao, J., Li, F., & Chen, Z. (2013). Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Journal of computational chemistry, 34(2), 121-131. https://doi.org/10.1002/jcc.23112
  23. Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., & Weinhold, F. (1998). University of Wisconsin. Madison, NBO Version, 3. https://doi.org/10.1515/9783110660074
  24. Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry, 33(5), 580-592. https://doi.org/10.1002/jcc.22885].
  25. Jomroz, M. H. (2004). ’Vibrational Energy distribution Analysis VEDA4 (Warsaw)Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  26. Mani, S., Swargiary, G., Gulati, S., Gupta, S., & Jindal, D. (2023). Molecular docking and ADMET studies to predict the anti-breast cancer effect of aloin by targeting estrogen and progesterone receptors. Materials Today: Proceedings, 80, 2378-2384. https://doi.org/10.1016/j.matpr.2021.06.362]
  27. Tsukerblat, B. S. (2006). Group theory in chemistry and spectroscopy: a simple guide to advanced usage. Courier Corporation.
  28. Raja, M., Muhamed, R. R., Muthu, S., & Suresh, M. (2017). Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene) semicarbazide. Journal of Molecular Structure, 1141, 284-298. https://doi.org/10.1016/j.molstruc.2017.03.117
  29. Lanke, S. K., & Sekar, N. (2016). Coumarin push-pull NLOphores with red emission: solvatochromic and theoretical approach. Journal of fluorescence, 26, 949-962. https://doi.org/10.1007/s10895-016-1783-6
  30. Khalid, M., Ullah, M. A., Adeel, M., Khan, M. U., Tahir, M. N., & Braga, A. A. C. (2019). Synthesis, crystal structure analysis, spectral IR, UV–Vis, NMR assessments, electronic and nonlinear optical properties of potent quinoline based derivatives: Interplay of experimental and DFT study. Journal of Saudi Chemical Society, 23(5), 546-560. https://doi.org/10.1016/j.jscs.2018.09.006
  31. Renuka, U., Subhani Khanam Nehal, N. M. Mallikarjuna, K. Vibha, S. M. Kumar, H. M. Kumar, and Thipperudrappa Javuku. "Computational and Spectroscopic Study of Newly Synthesized Bio-Active Azo Dyes: DFT, Solvatochromism, and Preferential Solvation." CHEMISTRYSELECT 9, no. 48 (2024).
  32. Kalita, D. J., & Deka, R(2024). Optimizing Anchoring Groups in D-Π-A Sensitizers for Coumarin-Benzothiazole Based Dsscs: A Dft/Tddft Study. Tddft Study. https://dx.doi.org/10.2139/ssrn.5019494
  33. Choudhary, V., Bhatt, A., Dash, D., & Sharma, N. (2019). DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2‐chloridophenylacetohydroxamate complexes. Journal of computational chemistry, 40(27), 2354-2363. https://doi.org/10.1002/jcc.26012
  34. Bulat, F. A., Murray, J. S., & Politzer, P. (2021). Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy. Computational and Theoretical Chemistry, 1199, 113192. https://doi.org/10.1016/j.comptc.2021.113192
  35. Nadaf, Y. F., Sushma, G. N., Suma, M., & Sultana, W. (2022). Spectroscopic, Molecular Structure, FMO And Thermodynamic Properties of 11-Chloro-12 (Methylsulfanyl) Quinoxaline Molecule using DFT. Journal of Advanced Scientific Research, 13(04), 51-58. https://doi.org/10.55218/JASR.202213410
  36. Ramesh, G., & Reddy, B. V. (2023). Investigation of barrier potential, structure (monomer & dimer), chemical reactivity, NLO, MEP, and NPA analysis of pyrrole-2-carboxaldehyde using quantum chemical calculations. Polycyclic Aromatic Compounds, 43(5), 4216-4230. https://doi.org/10.1080/10406638.2022.2086889
  37. Putz, M. V. (2006). Systematic formulations for electronegativity and hardness and their atomic scales within density functional softness theory. International Journal of Quantum Chemistry, 106(2), 361-389. https://doi.org/10.1002/qua.20787
  38. Sessa, F., & Rahm, M. (2022). Electronegativity equilibration. The Journal of Physical Chemistry A, 126(32), 5472-5482. https://doi.org/10.1021/acs.jpca.2c03814
  39. Agwamba, Ernest C., Akaninyene D. Udoikono, Hitler Louis, Esther U. Udoh, Innocent Benjamin, Azuaga T. Igbalagh, Henry O. Edet, Emmanuel U. Ejiofor, and Ugi B. Ushaka. "Synthesis, characterization, DFT studies, and molecular modeling of azo dye derivatives as potential candidate for trypanosomiasis treatment." Chemical Physics Impact 4 (2022): 100076.
  40. R., Annoji Reddy., Vibha., Prachalith, N. C., Ravikantha, M. N., Shilpa, K. G., & Thipperudrappa, J. (2023). Theoretical and Experimental Investigations of antibiotic agents Sulfamethoxazole (SMX) and Trimethoprim (TMP) by Density Functional Theory. Mapana Journal of Sciences, 22(1). https://doi.org/10.12723/mjs.64.10
  41. Bhavya, P., Melavanki, R., Sharma, K., Kusanur, R., Patil, N. R., & Thipperudrappa, J. (2019). Exploring the spectral features and quantum chemical computations of a novel biologically active heterocyclic class of compound 2MEFPBA dye: Experimental and theoretical approach. Chemical data collections, 19, 100182. https://doi.org/10.1016/j.cdc.2019.100182
  42. Prachalith, N. C., Vibha, K., Shilpa, K. G., Ravikantha, M. N., Thipperudrappa, J., & Khadke, U. V. (2023). Quantum computations of non-steroidal anti-inflammatory drug molecules using Density Functional Theory. Chemical Physics Impact, 7, 100317. https://doi.org/10.1016/j.chphi.2023.100317
  43. Landis, C. R., & Weinhold, F. (2014). The NBO view of chemical bonding. The Chemical Bond: Fundamental Aspects of Chemical Bonding, 91-120. https://doi.org/10.1002/9783527664696.ch3
  44. Patil, D. S., Avhad, K. C., & Sekar, N. (2018). Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties–DFT approach. Computational and Theoretical Chemistry, 1138, 75-83. https://doi.org/10.1016/j.comptc.2018.06.006
  45. Vibha, K., Prachalith, N. C., Reddy, R. A., Ravikantha, M. N., & Thipperudrappa, J. Computational studies on sulfonamide drug molecules by density functional theory. Chemical Physics Impact. https://doi.org/10.1016/j.chphi.2022.100147
  46. Siddiqui, N., & Javed, S. (2021). Quantum computational, spectroscopic investigations on ampyra (4-aminopyridine) by dft/td-dft with different solvents and molecular docking studies. Journal of Molecular Structure, 1224, 129021. https://doi.org/10.1016/j.molstruc.2020.129021
  47. Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry, 58(9), 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  48. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  49. Farihi, A., Bouhrim, M., Chigr, F., Elbouzidi, A., Bencheikh, N., Zrouri, H., Nasr, F.A., Parvez, M.K., Alahdab, A. and Ahami, A.O.T., 2023. Exploring Medicinal Herbs’ Therapeutic Potential and Molecular Docking Analysis for Compounds as Potential Inhibitors of Human Acetylcholinesterase in Alzheimer’s Disease Treatment. Medicina, 59(10), p.1812. https://doi.org/10.3390/medicina59101812
  50. Fathallah, N., El Deeb, M., Rabea, A. A., Almehmady, A. M., Alkharobi, H., Elhady, S. S., & Khalil, N. (2023). Ultra-Performance Liquid Chromatography Coupled with Mass Metabolic Profiling of Ammi majus Roots as Waste Product with Isolation and Assessment of Oral Mucosal Toxicity of Its Psoralen Component Xanthotoxin. Metabolites, 13(10), 1044. https://doi.org/10.3390/metabo13101044
  51. Islamoğlu, F. (2024). Molecular docking, bioactivity, adme, toxicity risks, and quantum mechanical parameters of some 1, 2-dihydroquinoline derivatives were calculated theoretically for investigation of its use as a pharmaceutical active ingredient in the treatment of multiple sclerosis (MS). Prospects in Pharmaceutical Sciences, 22(4), 168-187. https://doi.org/10.56782/pps.261