Optimisation Study of Efficiency of Ionic Liquids as Catalyst for Hydrolysis of Waste Nylon-66
Published 2024-12-23
Keywords
- Catalyst,
- DBHMD,
- Hydrolysis,
- Ionic liquids (ILs),
- Nylon-66
Copyright (c) 2024
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
With the increasing rate of production and usage of nylon-66, the environmental effect of plastics is a global concern. The widespread and careless use and disposal of these non-biodegradable materials has severely disrupted the environment and its biodiversity. To overcome these problems, ionic liquids have shown efficient potential as catalysts for hydrolysis waste nylon-66 into dibenzoyl derivatives of hexamethylenediamine (DBHMD) and adipic acid. Ionic liquids [emim]BF4, [bmim]BF4, and [bmim]PF6 successfully catalysed the hydrolysis of waste nylon-66 at different extents. 1.9 g (.1 mol) of [emim]BF4 has shown the maximum catalytic efficiency during hydrolysis of nylon-66 at 120 °C for five hours. In comparison, 2.3 g (.1 mol) of [bmim]BF4 and 2.8 g (.1 mol) of [bmim]PF6 showed the maximum catalytic properties at 120 °C for seven and nine hours, respectively. However, the hydrophilic nature of IL [emim]BF4 has shown more efficiency as a catalyst in the hydrolysis of waste nylon-66.
References
- Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M., “Accumulation and fragmentation of plastic debris in global environments”, Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998, 2009
- Priyanka, N., & Archana, T., “Biodegradability of Polythene and Plastic by the Help of Microorganism: A Way for Brighter Future”, Journal of Environmental & Analytical Toxicology, 01(02), 2011.
- Barnes, D. K. A., Galgani, F., Thompson, R. C., Barlaz, M., “Accumulation and fragmentation of plastic debris in global environments” Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998, 2009.
- Cincinelli, A., Scopetani, C., Chelazzi, D., Martellini, T., Pogojeva, M., & Slobodnik, J., “Microplastics in the Black Sea sediments”, Science of the Total Environment, 760, 143898, 2021.
- Maheswaran, B., Karmegam, N., Al-Ansari, M., Subbaiya, R., Al-Humaid, L., Raj, J. S., & Govarthanan, M., “Assessment, characterization, and quantification of microplastics from river sediments”, Chemosphere, 298, 134268, 2022.
- Li, H., Yang, Z., Jiang, F., Li, L., Li, Y., Zhang, M., & Sun, W., “Detection of microplastics in domestic and fetal pigs’ lung tissue in natural environment: A preliminary study”, Environmental Research, 216, 114623, 2023.
- Yang, S., Cheng, Y., Liu, T., Huang, S., Yin, L., Pu, Y., & Liang, G., “Impact of waste of COVID-19 protective equipment on the environment, animals and human health: a review”, Environmental Chemistry Letters, 20(5), 2951-2970, 2022.
- Bonhomme, S., Cuer, A., Delort, A. M., Lemaire, J., Sancelme, M., & Scott, G., “Environmental biodegradation of polyethylene”, Polymer degradation and Stability, 81(3), 441-452, 2003.
- Soto-Salcido, L. A., Pihlajamäki, A., & Mänttäri, M., “Reuse of end—of—Life membranes through accelerated polyamide degradation”, Waste Management, 171, 124-133, 2023.
- Kandakatla, P., Mahto, B., & Goel, S., “Extent and rate of biodegradation of different organic components in municipal solid waste”, International Journal of Environment and Waste Management, 11(4), 350-364, 2013.
- Masayuki, S., “Biodegradation of plastics”, Current opinion in Biotechnology, 12(3), 242-247, 2001.
- Perna, A.; Angotzi, G.N.; Berdondini, L.; Ribeiro, J.F., “Advancing the interfacing performances of chronically implantable neuralprobes in the era of CMOS neuroelectronics”, Front. Neurosci., 17, 1275908, 2023.
- Pannase, A. M., Singh, R. K., Ruj, B., & Gupta, P., “Decomposition of polyamide via slow pyrolysis: Effect of heating rate and operating temperature on product yield and composition”, Journal of Analytical and Applied Pyrolysis, 151, 104886, 2020.
- Krause, A.; Lange, A.; Ezrin, M.; Ruby, K., “Plastics Analysis Guide: Chemical and Instrumental Methods”, Hanser Publishers: Munich, Germany, 1983.
- Wang, Y., “Fiber and textile waste utilization, Waste and biomass valorization”, 1, 135-143, 2010.
- Puhan, M. R., Sutariya, B., & Karan, S., “Revisiting the alkali hydrolysis of polyamide nanofiltration membranes”, Journal of Membrane Science, 661, 120887, 2022.
- Meyer, A., Jones, N., Lin, Y., & Kranbuehl, D., “Characterizing and modeling the hydrolysis of polyamide-11 in a pH 7 water environment”, Macromolecules, 35(7), 2784-2798, 2002.
- Moiseev, Y. V., & Zaikov, G. E., “Chemical resistance of polymers in aggressive media”, Springer Science & Business Media, 1987.
- Wang, Z. L., Xu, J. L., Yuan, Q., Shibraen, M. H., Xu, J., & Yang, S. G., “Hydrothermal treatment of polyamide 6 with presence of lanthanum chloride”, Chinese Journal of Polymer Science, 34(4), 399-406, 2016.
- Cesarek, U., Pahovnik, D., & Zagar, E., “Chemical recycling of aliphatic polyamides by microwave-assisted hydrolysis for efficient monomer recovery”, ACS sustainable chemistry & engineering, 8(43), 16274, 2020.
- Coeck, R., De Bruyne, A., Borremans, T., Stuyck, W., & De Vos, D. E., “Ammonolytic hydrogenation of secondary amides: an efficient method for the recycling of long-chain polyamides”, ACS Sustainable Chemistry & Engineering, 10(9), 3048-3056, 2022.
- Kamimura, A., Kaiso, K., Suzuki, S., Oishi, Y., Ohara, Y., Sugimoto, T., & Yoshimoto, M., “Direct conversion of polyamides to ω-hydroxyalkanoic acid derivatives by using supercritical MeOH” Green Chemistry, 13(8), 2055-2061, 2011.
- Tournier, V., Duquesne, S., Guillamot, F., Cramail, H., Taton, D., Marty, A., & André, I., “Enzymes power for plastics degradation”, Chemical Reviews, 123(9), 5612-5701, 2023.
- Fernández-González, V., Andrade, J. M., Ferreiro, B., López-Mahía, P., & Muniategui-Lorenzo, S., “ Monitorization of polyamide microplastics weathering using attenuated total reflectance and microreflectance infrared spectrometry”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 263, 120162, 2021.
- Tachibana, K., Hashimoto, K., Yoshikawa, M., & Okawa, H., “Isolation and characterization of microorganisms degrading nylon 4 in the composted soil”, Polymer degradation and stability, 95(6), 912-917, 2010.
- Plechkova, N. V., & Seddon, K. R., “Applications of ionic liquids in the chemical industry”, In Chemical Society Reviews , 37(1), 123–150, 2008.
- Meine, N., Benedito, F., & Rinaldi, R., “Thermal stability of ionic liquids assessed by potentiometric titration”, Green Chemistry, 12(10), 1711–1714, 2010.
- Zhang, W., & Cue, B. W. (Eds.)., “Green techniques for organic synthesis and medicinal chemistry”, John Wiley & Sons, 2018.
- Rogers, R. D., & Seddon, K. R. (Eds.), “Ionic liquids as green solvents: progress and prospects”, American Chemical Society, 2003.
- Hallett, J. P., & Welton, T., “Room-temperature ionic liquids: solvents for synthesis and catalysis”, Chemical reviews, 111(5), 3508-3576, 2011.
- Rogers, R. D., & Seddon, K. R. (Eds.), “Ionic liquids as green solvents: progress and prospects”, American Chemical Society, 2003.
- Kamimura, A., & Yamamoto, S., “An efficient method to depolymerize polyamide plastics: A new use of ionic liquids”, Organic Letters, 9(13), 2533-2535, 2007.
- Zhang, T., Zhang, Y., Wang, Y., Huo, F., Li, Z., Zeng, Q., He, H., & Li, X., “Theoretical insights into the depolymerization mechanism of lignin to methyl p-hydroxycinnamate by [Bmim][FeCl4] ionic liquid”, Frontiers in Chemistry, 2019.
- Kamimura, A., Shiramatsu, Y., & Kawamoto, T., “Depolymerization of polyamide 6 in hydrophilic ionic liquids”, Green Energy and Environment, 4(2), 166–170, 2019.
- Song, X., Zhang, X., Wang, H., Liu, F., Yu, S., & Liu, S., “Methanolysis of poly(lactic acid) (PLA) catalyzed by ionic liquids”, Polymer Degradation and Stability, 98(12), 2760–2764, 2013.