Vol. 23 No. 4 (2024): Upcoming Articles
Research Articles

Optimisation Study of Efficiency of Ionic Liquids as Catalyst for Hydrolysis of Waste Nylon-66

Sunil Chikte
Research scholar
Swapnil V. Madhamshettiwar Madhamshettiwar
Assistant Professor, Department of Chemistry, Sardar Patel Mahavidyalaya, Chandrapur.
Bio

Published 2024-12-23

Keywords

  • Catalyst,
  • DBHMD,
  • Hydrolysis,
  • Ionic liquids (ILs),
  • Nylon-66

Abstract

With the increasing rate of production and usage of nylon-66, the environmental effect of plastics is a global concern. The widespread and careless use and disposal of these non-biodegradable materials has severely disrupted the environment and its biodiversity. To overcome these problems, ionic liquids have shown efficient potential as catalysts for hydrolysis waste nylon-66 into dibenzoyl derivatives of hexamethylenediamine (DBHMD) and adipic acid. Ionic liquids [emim]BF4, [bmim]BF4, and [bmim]PF6 successfully catalysed the hydrolysis of waste nylon-66 at different extents. 1.9 g (.1 mol) of [emim]BF4 has shown the maximum catalytic efficiency during hydrolysis of nylon-66 at 120 °C for five hours. In comparison, 2.3 g (.1 mol) of [bmim]BF4 and 2.8 g (.1 mol) of [bmim]PF6 showed the maximum catalytic properties at 120 °C for seven and nine hours, respectively. However, the hydrophilic nature of IL [emim]BF4 has shown more efficiency as a catalyst in the hydrolysis of waste nylon-66.

References

  1. Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M., “Accumulation and fragmentation of plastic debris in global environments”, Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998, 2009
  2. Priyanka, N., & Archana, T., “Biodegradability of Polythene and Plastic by the Help of Microorganism: A Way for Brighter Future”, Journal of Environmental & Analytical Toxicology, 01(02), 2011.
  3. Barnes, D. K. A., Galgani, F., Thompson, R. C., Barlaz, M., “Accumulation and fragmentation of plastic debris in global environments” Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998, 2009.
  4. Cincinelli, A., Scopetani, C., Chelazzi, D., Martellini, T., Pogojeva, M., & Slobodnik, J., “Microplastics in the Black Sea sediments”, Science of the Total Environment, 760, 143898, 2021.
  5. Maheswaran, B., Karmegam, N., Al-Ansari, M., Subbaiya, R., Al-Humaid, L., Raj, J. S., & Govarthanan, M., “Assessment, characterization, and quantification of microplastics from river sediments”, Chemosphere, 298, 134268, 2022.
  6. Li, H., Yang, Z., Jiang, F., Li, L., Li, Y., Zhang, M., & Sun, W., “Detection of microplastics in domestic and fetal pigs’ lung tissue in natural environment: A preliminary study”, Environmental Research, 216, 114623, 2023.
  7. Yang, S., Cheng, Y., Liu, T., Huang, S., Yin, L., Pu, Y., & Liang, G., “Impact of waste of COVID-19 protective equipment on the environment, animals and human health: a review”, Environmental Chemistry Letters, 20(5), 2951-2970, 2022.
  8. Bonhomme, S., Cuer, A., Delort, A. M., Lemaire, J., Sancelme, M., & Scott, G., “Environmental biodegradation of polyethylene”, Polymer degradation and Stability, 81(3), 441-452, 2003.
  9. Soto-Salcido, L. A., Pihlajamäki, A., & Mänttäri, M., “Reuse of end—of—Life membranes through accelerated polyamide degradation”, Waste Management, 171, 124-133, 2023.
  10. Kandakatla, P., Mahto, B., & Goel, S., “Extent and rate of biodegradation of different organic components in municipal solid waste”, International Journal of Environment and Waste Management, 11(4), 350-364, 2013.
  11. Masayuki, S., “Biodegradation of plastics”, Current opinion in Biotechnology, 12(3), 242-247, 2001.
  12. Perna, A.; Angotzi, G.N.; Berdondini, L.; Ribeiro, J.F., “Advancing the interfacing performances of chronically implantable neuralprobes in the era of CMOS neuroelectronics”, Front. Neurosci., 17, 1275908, 2023.
  13. Pannase, A. M., Singh, R. K., Ruj, B., & Gupta, P., “Decomposition of polyamide via slow pyrolysis: Effect of heating rate and operating temperature on product yield and composition”, Journal of Analytical and Applied Pyrolysis, 151, 104886, 2020.
  14. Krause, A.; Lange, A.; Ezrin, M.; Ruby, K., “Plastics Analysis Guide: Chemical and Instrumental Methods”, Hanser Publishers: Munich, Germany, 1983.
  15. Wang, Y., “Fiber and textile waste utilization, Waste and biomass valorization”, 1, 135-143, 2010.
  16. Puhan, M. R., Sutariya, B., & Karan, S., “Revisiting the alkali hydrolysis of polyamide nanofiltration membranes”, Journal of Membrane Science, 661, 120887, 2022.
  17. Meyer, A., Jones, N., Lin, Y., & Kranbuehl, D., “Characterizing and modeling the hydrolysis of polyamide-11 in a pH 7 water environment”, Macromolecules, 35(7), 2784-2798, 2002.
  18. Moiseev, Y. V., & Zaikov, G. E., “Chemical resistance of polymers in aggressive media”, Springer Science & Business Media, 1987.
  19. Wang, Z. L., Xu, J. L., Yuan, Q., Shibraen, M. H., Xu, J., & Yang, S. G., “Hydrothermal treatment of polyamide 6 with presence of lanthanum chloride”, Chinese Journal of Polymer Science, 34(4), 399-406, 2016.
  20. Cesarek, U., Pahovnik, D., & Zagar, E., “Chemical recycling of aliphatic polyamides by microwave-assisted hydrolysis for efficient monomer recovery”, ACS sustainable chemistry & engineering, 8(43), 16274, 2020.
  21. Coeck, R., De Bruyne, A., Borremans, T., Stuyck, W., & De Vos, D. E., “Ammonolytic hydrogenation of secondary amides: an efficient method for the recycling of long-chain polyamides”, ACS Sustainable Chemistry & Engineering, 10(9), 3048-3056, 2022.
  22. Kamimura, A., Kaiso, K., Suzuki, S., Oishi, Y., Ohara, Y., Sugimoto, T., & Yoshimoto, M., “Direct conversion of polyamides to ω-hydroxyalkanoic acid derivatives by using supercritical MeOH” Green Chemistry, 13(8), 2055-2061, 2011.
  23. Tournier, V., Duquesne, S., Guillamot, F., Cramail, H., Taton, D., Marty, A., & André, I., “Enzymes power for plastics degradation”, Chemical Reviews, 123(9), 5612-5701, 2023.
  24. Fernández-González, V., Andrade, J. M., Ferreiro, B., López-Mahía, P., & Muniategui-Lorenzo, S., “ Monitorization of polyamide microplastics weathering using attenuated total reflectance and microreflectance infrared spectrometry”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 263, 120162, 2021.
  25. Tachibana, K., Hashimoto, K., Yoshikawa, M., & Okawa, H., “Isolation and characterization of microorganisms degrading nylon 4 in the composted soil”, Polymer degradation and stability, 95(6), 912-917, 2010.
  26. Plechkova, N. V., & Seddon, K. R., “Applications of ionic liquids in the chemical industry”, In Chemical Society Reviews , 37(1), 123–150, 2008.
  27. Meine, N., Benedito, F., & Rinaldi, R., “Thermal stability of ionic liquids assessed by potentiometric titration”, Green Chemistry, 12(10), 1711–1714, 2010.
  28. Zhang, W., & Cue, B. W. (Eds.)., “Green techniques for organic synthesis and medicinal chemistry”, John Wiley & Sons, 2018.
  29. Rogers, R. D., & Seddon, K. R. (Eds.), “Ionic liquids as green solvents: progress and prospects”, American Chemical Society, 2003.
  30. Hallett, J. P., & Welton, T., “Room-temperature ionic liquids: solvents for synthesis and catalysis”, Chemical reviews, 111(5), 3508-3576, 2011.
  31. Rogers, R. D., & Seddon, K. R. (Eds.), “Ionic liquids as green solvents: progress and prospects”, American Chemical Society, 2003.
  32. Kamimura, A., & Yamamoto, S., “An efficient method to depolymerize polyamide plastics: A new use of ionic liquids”, Organic Letters, 9(13), 2533-2535, 2007.
  33. Zhang, T., Zhang, Y., Wang, Y., Huo, F., Li, Z., Zeng, Q., He, H., & Li, X., “Theoretical insights into the depolymerization mechanism of lignin to methyl p-hydroxycinnamate by [Bmim][FeCl4] ionic liquid”, Frontiers in Chemistry, 2019.
  34. Kamimura, A., Shiramatsu, Y., & Kawamoto, T., “Depolymerization of polyamide 6 in hydrophilic ionic liquids”, Green Energy and Environment, 4(2), 166–170, 2019.
  35. Song, X., Zhang, X., Wang, H., Liu, F., Yu, S., & Liu, S., “Methanolysis of poly(lactic acid) (PLA) catalyzed by ionic liquids”, Polymer Degradation and Stability, 98(12), 2760–2764, 2013.