Vol. 24 No. 3 (2025): Mapana Journal of Sciences
Research Articles

Theoretical approach to study the electroclinic effect very near to the Smectic C* –Smectic A* transition point of FLC molecules

Bharati Debi Biswas
Department of Physics, Sreegopal Banerjee College, Bagati, Mogra, Hooghly Mogra-712148, West Bengal, India
Tapas Pal Majumder
Department of Physics, Sreegopal Banerjee College, Bagati, Mogra, Hooghly Mogra-712148, West Bengal, India

Published 2025-09-29

Keywords

  • Ferroelectric liquid crystals,
  • Statistical physics,
  • Dielectric relaxation

Abstract

We propose a theoretical approach considering Landau type free energy expansion in order to understand the electroclinic effect appearing very close to the transition region between Smectic-C* to Smectic-A* phases. A new secondary order parameter is considered, and expressing it as the fluctuations of the applied field very close to the transition point, the capacitive nature of the system is addressed successfully at this very region. More over we have been able to show that the modulated Smectic-C* phase may be considered to be responsible for the origination of the electroclinic behavior.

References

  1. R. D. Kamien, J. V. Selinger, J Phys.: Condens. Mat. 13 (2001) R1-22.
  2. Y. G. Fokin, T. V. Murzina, O. A. Aktsipetrov, S. Soria, G. Marowsky, Phys. Rev. E 69 (2004) 031701/1-6.
  3. A. Adamski, K. Neyts, H. Pauwels, Feroelectrics 330 (2006) 93-101.
  4. Y. P. Kalmykov, J. K. Vij, H. Xu, A. Rappaport, M. D. Wand, Phys. Rev. E 50 (1994) 2109-2114.
  5. C. S. Hartley, N. Kapernaum, J. C. Roberts, F. Geisselmann, R. P. Lemieux, J. Mater. Chem. 16 (2006) 2329-2337.
  6. R. Qiu, J. T. Ho, S. K. Hark, Phys. Rev. A 38 (1988) 1653-1655.
  7. S. Garoff, R. B. Meyer, Phys. Rev. Lett. 38 (1977) 848-851.
  8. T. Hegmann, M. R. Meadows, M. D. Wand, R. P. Lemieux, J. Mater. Chem. 14 (2004) 185-190.
  9. J. Naciri, J. Ruth, G. Crawford, R. Shashidhar, B.R. Ratna, Chem. Mater. 7 (1995) 1397-1402.
  10. A. de Vries, A. Ekachai, N. Spielberg, Mol. Cryst. Liq. Cryst. 49 (1979) 143-152.
  11. R. B. Meyer, R. A. Pelcovits, Phys. Rev. E 65 (2002) 061704/1-6.
  12. A. Tang, D. Konovalov, J. Naciri, B. R. Ratna, S. Sprunt, Phys. Rev. E 65 (2001) R010703/1-4.
  13. L. D. Landau, Phys. Z. Sowjetunion 11 (1937) 26-35.
  14. N. A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36 (1980) 899-901.
  15. S. Garoff, R. B. Meyer, Phys. Rev. A 19 (1979) 338-347.
  16. N. A Clark, T. Bellini, R. F. Shao, D. Coleman, S. Bardon, D. R. Link, J. E. Maclennan, X. H. Chen, M. D. Wand, D. M. Walba, P. Rudquist, S. T. Lagerwall, Appl. Phys. Lett. 80 (2002) 4097-4099.
  17. J. V. Selinger, P. J. Collings, R. Shashidhar, Phys. Rev. E 64 (2001) 061705/1-9.
  18. U. Manna, J. K. Song, J. K. Vij, J. Naciri, Phys. Rev. E 78 (2008) 041705/1-5.
  19. E. I. Demikhov, JETP Lett. 61 (1995) 951-956.
  20. A. Jάkli, A. Saupe, Phys. Rev. E 53 (1996) R5580-5583.
  21. C. Bahr, D. Fleigner, Ferroelectrics 147 (1993) 1-11.
  22. I. Dierking, J. Phys. Condens. Matter. 17 (2005) 4403.
  23. T. Carlsson, B. Zeks, C. Filipic, A. Levstik, Phys. Rev. A 42 (1990) 877-889.