Vol. 24 No. 1 (2025): Mapana Journal of Sciences
Review Articles

Luminous Blue Variables: A Step Towards Exploring a Critical Phase in Massive Star Evolution

Prasoon Ashok Singh
Indian Institute of Astrophysics

Published 2025-04-12

Keywords

  • Luminous Blue Variables,
  • Massive stars,
  • Stellar evolution

Abstract

Luminous Blue Variables (LBVs) are a rare class of early type, bright variable stars of late O to A spectral types that
represent one of the most enigmatic phases in the evolution of massive stars. Optical spectra of LBVs display prominent
emission lines of HI, HeI, FeII, and [FeII], often showing P Cygni-type profiles indicating mass loss. Traditionally, LBVs
have been viewed as a transitional phase between massive O-type and Wolf-Rayet stars, marked by significant mass
loss, 10 to 100 times compared to normal supergiant stars having similar luminosity, through episodes of eruptions and strong winds. However, these enigmatic objects still remain mysterious but important to better understand the
life cycle of massive stars, motivating further investigations to unravel their true nature. In this article, we provide an introduction to the various observable properties of LBVs and explore both traditional and alternate models of their
origin. The article is written to motivate both young readers and scholars of the astronomy community by highlighting the importance of exploring these rare but exotic stars, the LBVs

References

  1. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae, ”Estimating distance from parallaxes. IV. Dis
  2. tances to 1.33 billion stars in Gaia Data Release 2,” The Astronomical Journal, vol. 156, no. 2, p. 58, 2018.
  3. G. Banerjee, ”Spectroscopy: The tool to study the stars,” MAPANA– Journal of Sciences, vol. 20, no. 4, pp. 9–31, 2021.
  4. C. S. Beals, ”On the nature of Wolf-Rayet emission,” Monthly Notices of the Royal Astronomical Society, vol. 90, no. 2, pp.202–212, 1929.
  5. E. Berger, R. Foley, and I. Ivans, ”SN 2009ip is an LBV Outburst,” The Astronomer’s Telegram, no. 2184, p. 1, 2009.
  6. B. Bohannan and N. R. Walborn, “The OFPE/WN9 class in the Large Magellanic Cloud,” Publications of the Astronomical Society of the Pacific, vol. 101, no. 639, p. 520, 1989.
  7. F. Bresolin, P. A. Crowther, and J. Puls, Eds., Massive Stars as Cosmic Engines, vol. 250 of IAU Symposium, 2008.
  8. Singh, Banerjee, Roy, Mathew, and Gopinathan Luminous Blue Variables: a review
  9. J. C. N. Campagnolo et al., “Detection of new eruptions in the
  10. Magellanic Clouds luminous blue variables R 40 and R 110,”
  11. Astronomy & Astrophysics, vol. 613, p. A33, 2018.
  12. E. L. Chentsov, “The star HD 168607- an S Doradus object,”
  13. Soviet Astronomy Letters, vol. 6, pp. 199–201, 1980.
  14. J. S. Clark and I. Negueruela, “A newly identified luminous
  15. blue variable in the galactic starburst cluster Westerlund 1,”
  16. Astronomy & Astrophysics, vol. 413, no. 2, pp. L15–L18, 2003.
  17. P. S. Conti, “Basic Observational Constraints on the Evolution
  18. of Massive Stars,” in Observational Tests of the Stellar Evolu
  19. tion Theory, A. Maeder and A. Renzini, Eds., vol. 105 of IAU
  20. Symposium, p. 233, 1984.
  21. K. Davidson and R. M. Humphreys, “Eta Carinae and Its En
  22. vironment,” Annual Review of Astronomy and Astrophysics, vol.
  23. , pp. 1–32, 1997.
  24. K. Davidson, A. F. J. Moffat, and H. J. G. L. M. Lamers, Eds.,
  25. Physics of Luminous Blue Variables, vol. 157 of Astrophysics and
  26. Space Science Library, 1989.
  27. K. Davidson, N. R. Walborn, and T. R. Gull, “The remarkable
  28. spectrum of some material ejected by Eta Car,” Astrophysical
  29. Journal Letters, vol. 254, pp. L47–L51, 1982.
  30. M. J. H. de Groot and H. J. G. L. M. Lamers, “Observation
  31. of gradual brightening of P Cygni due to stellar evolution,”
  32. Nature, vol. 355, no. 6359, pp. 422–423, 1992.
  33. V. V. Dwarkadas, “On luminous blue variables as the progen
  34. itors of core-collapse supernovae, especially type IIn super
  35. novae: LBVs as supernova progenitors,” Monthly Notices of the
  36. Royal Astronomical Society, vol. 412, no. 3, pp. 1639–1649,
  37. T. Freyer and G. Hensler, “The Energetic Impact of Massive
  38. Stars on the ISM,” in Astronomische Gesellschaft Meeting Ab
  39. stracts, vol. 18, p. MS 02 02, 2001.
  40. A. Gal-Yam et al., “On the progenitor of SN 2005gl and the
  41. nature of type IIn supernovae,” The Astrophysical Journal, vol.
  42. , no. 1, p. 372, 2007.
  43. J. P. Gardner et al., “The James Webb Space Telescope,” Space
  44. Science Reviews, vol. 123, no. 4, pp. 485–606, 2006.
  45. Mapana Journal of Sciences, Vol. 50, No. 3
  46. ISSN 0975-3303
  47. D. R. Gies, “The Kinematical and Binary Properties of Asso
  48. ciation and Field O Stars,” Astrophysical Journal Supplement
  49. Series, vol. 64, p. 545, 1987.
  50. R.F.Gonz´ alez and G. Koenigsberger, “Observations of the early
  51. stages in the formation of an LBV shell,” Astronomy & Astro
  52. physics, vol. 561, p. A105, 2014.
  53. R. W. Goodrich, G. S. Stringfellow, G. D. Penrod, and A. V.
  54. Filippenko, “SN 1961V: an Extragalactic Eta Carinae Analog?”
  55. Astrophysical Journal, vol. 342, p. 908, 1989.
  56. M. Gr¨ obner, W. Ishibashi, S. Tiwari, M. Haney, and P. Jetzer,
  57. ”Binary black hole mergers in AGN accretion discs: gravita
  58. tional wave rate density estimates,” Astronomy & Astrophysics,
  59. vol. 638, p. A119, 2020.
  60. J. H. Groh, D. J. Hillier, and A. Damineli, ”AG Carinae: A lumi
  61. nous blue variable with a high rotational velocity,” Astrophysi
  62. cal Journal Letters, vol. 638, no. 1, pp. L33–L36, 2006.
  63. J. H. Groh, G. Meynet, and S. Ekstr¨om, ”Massive star evolu
  64. tion: luminous blue variables as unexpected supernova pro
  65. genitors,” Astronomy & Astrophysics, vol. 550, p. L7, 2013.
  66. J. H. Groh, G. Meynet, S. Ekstr¨ om, and C. Georgy, ”The evo
  67. lution of massive stars and their spectra. I. A non-rotating 60
  68. M⊙ star from the zero-age main sequence to the pre-supernova
  69. stage,” Astronomy & Astrophysics, vol. 564, p. A30, 2014.
  70. S. Guha Niyogi et al., ”Dust composition and mass-loss return
  71. from the luminous blue variable R71 in the LMC,” Astronomy
  72. &Astrophysics, vol. 569, p. A80, 2014.
  73. J. A. Guzik, B. Kloppenborg, and J. Jackiewicz, ”Deneb and
  74. the alpha Cygni variables,” 2024. [Online]. Available: https:
  75. //arxiv.org/abs/2401.12345
  76. V. V. Gvaramadze, A. Y. Kniazev, and S. Fabrika, ”Revealing
  77. evolved massive stars with Spitzer,” Monthly Notices of the
  78. Royal Astronomical Society, vol. 405, no. 2, pp. 1047–1060,
  79. S. R. Heap, T. Lanz, and I. Hubeny, ”Fundamental properties
  80. of O-type stars,” Astrophysical Journal, vol. 638, no. 1, p. 409,
  81. A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hart
  82. mann, ”How massive single stars end their life,” Astrophysical
  83. Journal, vol. 591, no. 1, pp. 288–300, 2003.
  84. Singh, Banerjee, Roy, Mathew, and Gopinathan Luminous Blue Variables: a review
  85. D. J. Hillier, ”UV spectroscopy of massive stars,” Galaxies, vol.
  86. , no. 3, p. 60, 2020.
  87. D. J. Hillier, K. Davidson, K. Ishibashi, and T. Gull, ”On the na
  88. ture of the central source in η Carinae,” Astrophysical Journal,
  89. vol. 553, no. 2, p. 837, 2001.
  90. T. C. Hillwig et al., ”Binary and multiple O-type stars in the
  91. Cassiopeia OB6 association,” Astrophysical Journal, vol. 639,
  92. no. 2, p. 1069, 2006.
  93. E. Hubble and A. Sandage, ”The brightest variable stars in ex
  94. tragalactic nebulae. I. M31 and M33,” Astrophysical Journal,
  95. vol. 118, p. 353, 1953.
  96. R.M.Humphreys,”TheWolf-Rayetconnection: Luminousblue
  97. variables and evolved supergiants,” in Wolf-Rayet Stars and In
  98. terrelations with Other Massive Stars in Galaxies, K. A. van der
  99. Hucht and B. Hidayat, Eds., vol. 143 of IAU Symposium, p.
  100. , 1991.
  101. R. M. Humphreys and K. Davidson, ”Studies of luminous stars
  102. in nearby galaxies. III. Comments on the evolution of the
  103. most massive stars in the Milky Way and the Large Magellanic
  104. Cloud,” Astrophysical Journal, vol. 232, pp. 409–420, 1979.
  105. R. M. Humphreys and K. Davidson, ”The luminous blue vari
  106. ables: Astrophysical geysers,” Publications of the Astronomical
  107. Society of the Pacific, vol. 106, p. 1025, 1994.
  108. R. M. Humphreys, T. J. Jones, and R. D. Gehrz, ”The enigmatic
  109. object Variable A in M33,” Astronomical Journal, vol. 94, p.
  110. , 1987.
  111. R. M. Humphreys, K. Davidson, and N. Smith, ”η Carinae’s sec
  112. ond eruption and the light curves of the η Carinae variables,”
  113. Publications of the Astronomical Society of the Pacific, vol. 111,
  114. no. 763, pp. 1124–1131, 1999.
  115. G. Israelian and M. de Groot, ”P Cygni: An extraordinary
  116. luminous blue variable,” Space Science Reviews, vol. 90, pp.
  117. –522, 1999.
  118. Y. C. Joshi, K. Sharma, A. Gangopadhyay, R. Gokhale, and
  119. K. Misra, ”A long-term photometric variability and spectro
  120. scopic study of luminous blue variable AF And in M31,” The
  121. Astronomical Journal, vol. 158, no. 5, p. 175, 2019.
  122. Mapana Journal of Sciences, Vol. 50, No. 3
  123. ISSN 0975-3303
  124. V. M. Kalari, J. S. Vink, P. L. Dufton, and M. Fraser, ”How com
  125. mon is LBV S Doradus variability at low metallicity?” Astron
  126. omy & Astrophysics, vol. 618, p. A17, 2018.
  127. A. Kashi and N. Soker, ”Periastron passage triggering of the
  128. th century eruptions of Eta Carinae,” The Astrophysical Jour
  129. nal, vol. 723, no. 1, pp. 602–611, 2010.
  130. A. Y. Kniazev, V. V. Gvaramadze, and L. N. Berdnikov, ”MN48:
  131. A new galactic bona fide luminous blue variable revealed by
  132. Spitzer and SALT,” Monthly Notices of the Royal Astronomical
  133. Society, vol. 459, no. 3, pp. 3068–3077, 2016.
  134. A. Y. Kniazev, V. V. Gvaramadze, and L. N. Berdnikov, ”WS1:
  135. One more new galactic bona fide luminous blue variable,”
  136. Monthly Notices of the Royal Astronomical Society: Letters, vol.
  137. , no. 1, pp. L60–L64, 2015.
  138. G.Koenigsberger et al., ”The HD 5980 multiple system: Masses
  139. and evolutionary status,” The Astronomical Journal, vol. 148,
  140. no. 4, p. 62, 2014.
  141. G. Koenigsberger, M. Pe˜na, W. Schmutz, and S. Ayala, ”Mass
  142. loss rate and He/H abundance of the erupting component in
  143. the Small Magellanic Cloud system HD 5980,” The Astrophysi
  144. cal Journal, vol. 499, no. 2, pp. 889–897, 1998.
  145. T. Kogure and K.-C. Leung, The Astrophysics of Emission-Line
  146. Stars, vol. 342 of Astrophysics and Space Science Library,
  147. P. Kuan and L. V. Kuhi, ”P Cygni stars and mass loss,” The As
  148. trophysical Journal, vol. 199, pp. 148–149, 1975.
  149. H. J. G. L. M. Lamers, ”Variations in luminous blue variables,”
  150. in Instabilities in Luminous Early Type Stars, H. J. G. L. M.
  151. Lamers and C. W. H. de Loore, Eds., vol. 136 of Astrophysics
  152. and Space Science Library, p. 99, 1987.
  153. H. J. G. L. M. Lamers, ”Mass loss from luminous blue vari
  154. ables,” International Astronomical Union Colloquium, vol. 113,
  155. pp. 135–148, 1989.
  156. N. Langer, G. Garc´ ıa-Segura, and M.-M. M. Low, ”Giant out
  157. bursts of luminous blue variables and the formation of the Ho
  158. munculus nebula around Eta Carinae,” The Astrophysical Jour
  159. nal, vol. 520, no. 1, p. L49, 1999.
  160. Singh, Banerjee, Roy, Mathew, and Gopinathan Luminous Blue Variables: a review
  161. C. Leitherer, W. Schmutz, D. C. Abbott, W.-R. Hamann, and
  162. U. Wessolowski, ”Atmospheric models for luminous blue vari
  163. ables,” The Astrophysical Journal, vol. 346, p. 919, 1989.
  164. P. J. McGregor et al., ”Far-infrared emission from the AG Cari
  165. nae ring,” The Astrophysical Journal, vol. 329, p. 874, 1988.
  166. P. J. McGregor, A. R. Hyland, and D. J. Hillier, ”Atomic and
  167. molecular line emission from early-type high-luminosity stars,”
  168. The Astrophysical Journal, vol. 324, p. 1071, 1988.
  169. M. A. D. Machado, F. X. de Ara´ ujo, C. B. Pereira, and M. B.
  170. Fernandes, “HR Carinae: New Spectroscopic Data and Physical
  171. Parameters,” Astronomy & Astrophysics, vol. 387, pp. 151–161,
  172. A. Maeder, ”Evolution of chemical abundances in massive
  173. stars. I. OB stars, Hubble-Sandage variables and Wolf-Rayet
  174. stars. Changes at stellar surfaces and galactic enrichment by
  175. stellar winds,” Astronomy & Astrophysics, vol. 120, p. 113,
  176. L. Mahy et al., ”Early-type stars in the young open cluster NGC
  177. and in the Monoceros OB2 association: I. The multiplic
  178. ity of O-type stars,” Astronomy & Astrophysics, vol. 502, no. 3,
  179. pp. 937–950, 2009.
  180. F. Martins and A. Palacios, ”A comparison of evolutionary
  181. tracks for single Galactic massive stars,” Astronomy & Astro
  182. physics, vol. 560, p. A16, 2013.
  183. O. V. Maryeva, S. V. Karpov, A. Y. Kniazev, and V. V. Gvara
  184. madze, ”How long can luminous blue variables sleep? A long
  185. term photometric variability and spectral study of the Galactic
  186. candidate luminous blue variable MN 112,” Monthly Notices of
  187. the Royal Astronomical Society, vol. 513, no. 4, pp. 5752–5765,
  188. P. Massey, K. DeGioia-Eastwood, and E. Waterhouse, “The pro
  189. genitor masses of Wolf-Rayet stars and luminous blue variables
  190. determined from cluster turnoffs. II. Results from 12 Galactic
  191. clusters and OB associations,” The Astronomical Journal, vol.
  192. , no. 2, pp. 1050–1070, 2001.
  193. G.Meynet, C. Georgy, R. Hirschi, A. Maeder, P. Massey, N. Przy
  194. billa, and M. F. Nieva, “Red supergiants, luminous blue vari
  195. ables and Wolf-Rayet stars: the single massive star perspec
  196. tive,” Astronomy & Astrophysics, vol. 564, p. A30, 2014.
  197. Mapana Journal of Sciences, Vol. 50, No. 3
  198. ISSN 0975-3303
  199. G. Meynet and A. Maeder, “Stellar evolution with rotation. XI.
  200. Wolf-Rayet star populations at different metallicities,” Astron
  201. omy & Astrophysics, vol. 429, pp. 581–598, 2005.
  202. A. S. Miroshnichenko, N. Manset, S. V. Zharikov, J. Zsarg´o,
  203. J. A. Ju´arez Jim´ enez, J. H. Groh, H. Levato, M. Grosso, R. J.
  204. Rudy, E. A. Laag, K. B. Crawford, R. C. Puetter, D. E. Reichart,
  205. K. M. Ivarsen, J. B. Haislip, M. C. Nysewander, and A. P. La
  206. Cluyze, “Confirmation of the luminous blue variable status of
  207. MWC930,” Advances in Astronomy, vol. 2014, pp. 1–9, 2014.
  208. A. Nota and M. Clampin, “Nebulae around LBVs and related
  209. stars: Morphology, dynamics, age, mass,” in Luminous Blue
  210. Variables: Massive Stars in Transition, A. Nota and H. Lamers,
  211. Eds., vol. 120. Astronomical Society of the Pacific Conference
  212. Series, 1997, p. 303.
  213. A. Nota, C. Leitherer, M. Clampin, P. Greenfield, and D. A.
  214. Golimowski, “Mapping AGCarinae: Long-slit spectroscopy and
  215. coronographic imaging of the nebula and jet,” The Astrophysi
  216. cal Journal, vol. 398, p. 621, 1992.
  217. A. Pasquali, “UV spectral morphology: The LBV- Opfe/WN9
  218. connection,” in Luminous Blue Variables: Massive Stars in Tran
  219. sition, A. Nota and H. Lamers, Eds., vol. 120. Astronomical
  220. Society of the Pacific Conference Series, 1997, p. 13.
  221. A. Pasquali, A. Nota, L. J. Smith, S. Akiyama, M. Messineo, and
  222. M. Clampin, “Multiwavelength study of the nebula associated
  223. with the Galactic LBV candidate HD 168625,” The Astronomical
  224. Journal, vol. 124, no. 3, pp. 1625–1635, 2002.
  225. A. Petriella, S. A. Paron, and E. B. Giacani, “The molecular gas
  226. around the luminous blue variable star G24.73+0.69,” Astron
  227. omy & Astrophysics, vol. 538, p. A14, 2012.
  228. A. S. Rajpurohit, F. Allard, S. Rajpurohit, R. Sharma, G. D. C.
  229. Teixeira, O. Mousis, and K. Rajpurohit, “Exploring the stellar
  230. properties of M dwarfs with high-resolution spectroscopy from
  231. the optical to the near-infrared (Corrigendum),” Astronomy &
  232. Astrophysics, vol. 622, p. C1, 2019.
  233. M. Robberto and T. M. Herbst, “Warm dust around blue hy
  234. pergiants: Mid-infrared imaging of the luminous blue variable
  235. HD 168625,” The Astrophysical Journal, vol. 498, no. 1, pp.
  236. –412, 1998.
  237. H. Sana, S. E. de Mink, A. de Koter, N. Langer, C. J. Evans,
  238. M.Gieles, E. Gosset, R. G. Izzard, J.-B. Le Bouquin, and F. R. N.
  239. Singh, Banerjee, Roy, Mathew, and Gopinathan Luminous Blue Variables: a review
  240. Schneider, “Binary interaction dominates the evolution of mas
  241. sive stars,” Science, vol. 337, no. 6093, p. 444, 2012.
  242. A. A. C. Sander and J. S. Vink, “On the nature of massive he
  243. lium star winds and Wolf-Rayet-type mass-loss,” Monthly No
  244. tices of the Royal Astronomical Society, vol. 499, no. 1, pp. 873
  245. , 2020.
  246. C. Scannapieco, P. B. Tissera, S. D. M. White, and V. Springel,
  247. “Feedback and metal enrichment in cosmological SPH simu
  248. lations– II. A multiphase model with supernova energy feed
  249. back,” Monthly Notices of the Royal Astronomical Society, vol.
  250. , no. 3, pp. 1125–1139, 2006.
  251. W. Schmutz, W. R. Hamann, and U. Wessolowski, “Spectral
  252. analysis of 30 Wolf-Rayet stars,” Astronomy and Astrophysics,
  253. vol. 210, pp. 236–248, 1989.
  254. N. Smith, “Luminous blue variables and the fates of very mas
  255. sive stars,” Philosophical Transactions of the Royal Society A:
  256. Mathematical, Physical and Engineering Sciences, vol. 375, no.
  257. , p. 20160268, 2017.
  258. N. Smith, M. Aghakhanloo, J. W. Murphy, M. R. Drout, K. G.
  259. Stassun, and J. H. Groh, “On the Gaia DR2 distances for Galac
  260. tic luminous blue variables,” Monthly Notices of the Royal As
  261. tronomical Society, vol. 488, no. 2, pp. 1760–1778, 2019.
  262. N. Smith, W. Li, A. A. Miller, J. M. Silverman, A. V. Filip
  263. penko, J.-C. Cuillandre, M. C. Cooper, T. Matheson, and S. D.
  264. Van Dyk, “A massive progenitor of the luminous type IIn super
  265. nova 2010jl,” The Astrophysical Journal, vol. 732, no. 2, p. 63,
  266. N. Smith, R. D. Gehrz, P. M. Hinz, W. F. Hoffmann, J. L. Hora,
  267. E. E. Mamajek, and M. R. Meyer, “Mass and kinetic energy of
  268. the Homunculus nebula around η Carinae,” The Astronomical
  269. Journal, vol. 125, no. 3, pp. 1458–1466, 2003.
  270. N. Smith and P. Hartigan, “Infrared [Fe II] emission from P
  271. Cygni’s nebula: Atomic data, mass, kinematics, and the 1600
  272. AD outburst,” The Astrophysical Journal, vol. 638, no. 2, pp.
  273. –1055, 2006.
  274. L. J. Smith, A. Nota, A. Pasquali, C. Leitherer, M. Clampin, and
  275. P. A. Crowther, “Ejected nebulae as probes of the evolution of
  276. massive stars in the Large Magellanic Cloud,” The Astrophysical
  277. Journal, vol. 503, no. 1, pp. 278–296, 1998.
  278. Mapana Journal of Sciences, Vol. 50, No. 3
  279. ISSN 0975-3303
  280. N. Smith and R. Tombleson, “Luminous blue variables are anti
  281. social: their isolation implies that they are kicked mass gainers
  282. in binary evolution,” Monthly Notices of the Royal Astronomical
  283. Society, vol. 447, no. 1, pp. 598–617, 2014.
  284. N. Smith, J. S. Vink, and A. de Koter, “The missing luminous
  285. blue variables and the bistability jump,” The Astrophysical Jour
  286. nal, vol. 615, no. 1, p. 475, 2004.
  287. B. Spejcher, N. D. Richardson, H. Pablo, M. Beltran, P. Butler,
  288. and E. Avila, “An investigation into the variability of luminous
  289. blue variable stars with TESS,” The Astronomical Journal, vol.
  290. , no. 3, p. 128, 2025.
  291. C. Sterken, E. Gosset, A. Juttner, O. Stahl, B. Wolf, and M. Axer,
  292. “HD 160529: a new galactic luminous blue variable,” Astron
  293. omy and Astrophysics, vol. 247, p. 383, 1991.
  294. C. Sterken, A. M. van Genderen, A. Plummer, and A. F. Jones,
  295. “VizieR online data catalog: Wra 751 light curves (Sterken+,
  296. ,” VizieR On-line Data Catalog: J/A+A/484/463, 2008.
  297. T. Suda and M. Y. Fujimoto, “Evolution of low- and
  298. intermediate-mass stars with [Fe/H]-2.5,” Monthly Notices of
  299. the Royal Astronomical Society, vol. 405, no. 1, pp. 177–193,
  300. F. Summers, R. Hurt, and K. Arcand, “Eta Carinae and the
  301. Homunculus Nebula in 3D,” in American Astronomical Society
  302. Meeting #240, vol. 240 of American Astronomical Society Meet
  303. ing Abstracts, p. 345.05, 2022.
  304. T. Szeifert, O. Stahl, B. Wolf, and F. J. Zickgraf, “R40: First
  305. luminous blue variable in the Small Magellanic Cloud,” in New
  306. Aspects of Magellanic Cloud Research, B. Baschek, G. Klare, and
  307. J. Lequeux, Eds., vol. 416 of Lecture Notes in Physics, p. 280,
  308. F. Taddia et al., “Carnegie Supernova Project: Observations of
  309. Type IIn Supernovae,” Astronomy & Astrophysics, vol. 555, p.
  310. A10, 2013.
  311. G. A. Tammann and A. Sandage, “The Stellar Content and Dis
  312. tance of the Galaxy NGC 2403 in the M81 Group,” The Astro
  313. physical Journal, vol. 151, p. 825, 1968.
  314. G. Umana et al., “The Dusty Nebula Surrounding HR Car: A
  315. Spitzer View,” The Astrophysical Journal, vol. 694, no. 1, pp.
  316. –703, 2009.
  317. Singh, Banerjee, Roy, Mathew, and Gopinathan Luminous Blue Variables: a review
  318. G. Umana, C. S. Buemi, C. Trigilio, P. Leto, and J. L. Hora,
  319. “Spitzer, Very Large Telescope, and Very Large Array Obser
  320. vations of the Galactic Luminous Blue Variable Candidate HD
  321. ,” The Astrophysical Journal, vol. 718, no. 2, p. 1036,
  322. A. F. Valeev, O. N. Sholukhova, and S. N. Fabrika, “Search for
  323. LBV Candidates in the M33 Galaxy,” Astrophysical Bulletin, vol.
  324. , no. 2, pp. 140–149, 2010.
  325. A. M. van Genderen, C. Sterken, and M. de Groot, “New Dis
  326. coveries on the S Dor Phenomenon Based on an Investigation
  327. of the Photometric History of the Variables AG Car, S Dor and
  328. η Car,” Astronomy & Astrophysics, vol. 318, pp. 81–98, 1997.
  329. A. M. van Genderen et al., “Light Variations of Massive Stars
  330. (Alpha Cygni Variables). XIII. The B-type Hypergiants R 81
  331. (LBV), HD 80077 (LBV?), HD 168607 = V 4029 Sagittarii
  332. (LBV) and HD 168625 = V 4030 Sagittarii,” Astronomy & As
  333. trophysics, vol. 264, pp. 88–104, 1992.
  334. A. M. van Genderen, “S Doradus Variables in the Galaxy and
  335. the Magellanic Clouds,” Astronomy & Astrophysics, vol. 366,
  336. pp. 508–531, 2001.
  337. J. S. Vink, “Mass Loss and the Evolution of Massive Stars,” New
  338. Astronomy Reviews, vol. 52, no. 7, pp. 419–422, 2008.
  339. J. S. Vink, “Fast and Slow Winds from Supergiants and Lumi
  340. nous Blue Variables,” Astronomy & Astrophysics, vol. 619, p.
  341. A54, 2018.
  342. J. S. Vink, “Theory and Diagnostics of Hot Star Mass Loss,”
  343. Annual Review of Astronomy and Astrophysics, vol. 60, pp. 203
  344. , 2022.
  345. R. Viotti et al., “The Nature of the Luminous Blue Variable AG
  346. Carinae,” Space Science Reviews, vol. 66, no. 1–4, pp. 215–218,
  347. N. R. Walborn et al., “A Three-Decade Outburst of the LMC
  348. Luminous Blue Variable R127 Draws to a Close,” The Astro
  349. physical Journal, vol. 683, no. 1, p. L33, 2008.
  350. K. Weis, “LBV Nebulae: The Mass Lost from the Most Massive
  351. Stars,” Reviews in Modern Astronomy, vol. 14, pp. 261–281,
  352. Mapana Journal of Sciences, Vol. 50, No. 3
  353. ISSN 0975-3303
  354. K. Weis, “On the Structure and Kinematics of Nebulae Around
  355. LBVs and LBV Candidates in the LMC,” Astronomy & Astro
  356. physics, vol. 408, pp. 205–229, 2003.
  357. K. Weis, “Nebulae Around Luminous Blue Variables– Large
  358. Bipolar Variety,” Proceedings of the International Astronomical
  359. Union, vol. 6, no. S272, pp. 372–377, 2010.
  360. K. Weis andD.J.Bomans, “Luminous Blue Variables,” Galaxies,
  361. vol. 8, no. 1, p. 20, 2020.
  362. J. A. Westphal and G. Neugebauer, “Infrared Observations of
  363. Eta Carinae to 20 Microns,” The Astrophysical Journal, vol. 156,
  364. p. L45, 1969.
  365. M. Wiescher, “The History and Impact of the CNO Cycles in
  366. Nuclear Astrophysics,” Physics in Perspective, vol. 20, no. 1, pp.
  367. –158, 2018.
  368. B. Wolf and O. Stahl, “Inverse P Cygni-Type Profiles in the
  369. Spectrum of the Luminous Blue Variable S Doradus,” Astron
  370. omy & Astrophysics, vol. 235, pp. 340–344, 1990.
  371. B. Wolf, “Investigation of Luminous Blue Variables of the Mag
  372. ellanic Clouds during the Past Decade with LTPV, CASPEC and
  373. IUE,” in The Impact of Long-Term Monitoring on Variable Star
  374. Research: Astrophysics, C. Sterken and M. de Groot, Eds., vol.
  375. , NATOAdvanced Study Institute (ASI) Series C. Springer,
  376. , p. 291.
  377. S. E. Woosley, A. Heger, and T. A. Weaver, “The Evolution and
  378. Explosion of Massive Stars,” Reviews of Modern Physics, vol. 74,
  379. no. 4, pp. 1015–1071, 2002.
  380. T. Zethson, S. Johansson, H. Hartman, and T. R. Gull, “η Cari
  381. nae: Linelist for the Emission Spectrum of the Weigelt Blobs in
  382. the 1700 to 10400 Wavelength Region,” Astronomy & Astro
  383. physics, vol. 540, p. A133, 2012