Vol. 24 No. 1 (2025): Mapana Journal of Sciences
Research Articles

Nonlinearities and Dielectric constant of Ge-Se Chalcogenide Glasses

Deepak Sharma
SCRIET,C.C.S. University Meerut, India

Published 2025-04-05

Keywords

  • Chalcogenide glasses,
  • Bandgap,
  • Refractive index,
  • Susceptibility,
  • Polarizability,
  • Dielectric constant
  • ...More
    Less

Abstract

We recorded a transmission spectrum of Ge-Se glasses in the UV-visible range, revealing 80-90% transmission of light at room temperature. The percentage of light absorbed by these glasses is only 15%. The applicability of these glasses for the fabrication of single-mode optical fibre is being pursued by their high transmission and nearly nonexistent normal dispersion, while a small anomalous dispersion drop in the transmission is noticed at 720 nm in the UV-visible region. Drop in transmission at higher wavelength is explained in terms of absorption/photodarkening effect. Analysis of prepared glasses reveals direct band-gap material; thus, these materials can be used directly in fibre laser preparation. The refractive index obtained from spectra is modelled by Cauchy expression, and it is valid up to 700nm; beyond 700nm, wavelength increase in refractive index is modelled by poly4. Dielectric characteristics are examined and assessed. Ge-Se glasses have a decreasing dielectric constant as the band gap widens, indicating a decreasing trend in dielectric constant with increasing frequency.

References

  1. Jiri Jemelka, Karel Palka, Petr Janicek, Stanislev Slang, Jiri Jancalek, Michal Kurka and Miroslav Vlcek, Solution Processed Multilayered ThinFilms of Ge20Sb5S75 and Ge20Sb5Se75 chalcogenide glasses, Scientific reports13,16609(2023). https://doi.org/10.1038/s41598-023-43772-w
  2. J.A.Savage, Optical properties of chalcogenide glasses, J of Non-Cryst. Solids Vol 47, 1, 101-115 (1982).
  3. T.Babeva, V.Vassilev, P.Gushterova, A.Amova, G.Alexieva, V.Strashilov, P.Petkova, Optical properties of chalcogenide glasses from the system As2Se3-Ag4SSe-PbTe J of optoelectronics and advanced materials vol19, no 3-4, 204-210 (2017). .
  4. A.B.Seddon, Fluoride glasses, A.E. Comyns, ed. (Wiley 1989), chapter7
  5. M.Morita, T.Ohmi, E. Hasegawa, M. Kawakami and M. Ohwada, J of Appl.Physics 68, 1272 (1990).
  6. J.J. Nunes, Ł Sojka, R.W. Crane, D. Furniss, Z.Q. Tang, D. Mabwa, B. Xiao, T.M. Benson, M.C. Farries, N. Kalfagiannis, E. Barney, S. Phang, A.B. Seddon, S. Sujecki Opt. Lett. 46(15), 3504-3507(2021).
  7. J.S.Sanghera, I.D.Agarwal, L.B.Shaw, L.E.Busse, P.Thielen, V.Nguyen, P.Pureza, S.Bayya, F.Kung, J.of Optoelectronics and Advanced Materials, vol3, no.3,p627-640,2001
  8. J.Tauc, R.Grigorovici, A.Vancu, Physica status solidi B, 15, 627-637, (1966).
  9. M.Kastner, Phys.Rev.Lett. 28,355, (1972).
  10. Ralph Chbeir, Aaron Welton, Matthew Burger, Soumendu Chakarvarti, Shreeram Dash, Siddhesh Bhosle, Kapila Gunashekra, Badriah S.Almutairi, Bernard Goodrman, Matthieu Miccoulaut, Punit Boolchand, J.Am.Ceramic Society 106, 3277-3302 (2023).
  11. P.Tronc, M.Bensoussan, A.Brenac, C.Sebenne, Phys.Rev.B 8, 5947 (1973).
  12. E.A Moelwyn-Hughes, Physical chemistry, Pergamon, London 1961.
  13. H.Rawson, properties and application of glass, Elsevier, Amsterdam, 1980.
  14. Reddy RR, Nazeer Ahammed Y,Rama Gopal K, et al.,Opt Mat, 10 (1998)95;Reddy RR & Ahammed NY,Infra Phys Technol, 36 (1995) 825.
  15. Moss TS, Proc Phys Soc B, 63 (1950) 167.
  16. Moss TS, Photoconductivity in Elements (Butterworth, London), 1952, 61.
  17. Moss TS, Phys Stat Sol (B) 131(1985), 415.
  18. H.Tichy, L.Ticha J.Opt.Adv.Mat. 4(2), 381, (2002).
  19. J.J.Wynne, Phys.Rev.B 178, 1295, (1969).