Nonlinearities and Dielectric constant of Ge-Se Chalcogenide Glasses
Published 2025-04-05
Keywords
- Chalcogenide glasses,
- Bandgap,
- Refractive index,
- Susceptibility,
- Polarizability
- Dielectric constant ...More
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
We recorded a transmission spectrum of Ge-Se glasses in the UV-visible range, revealing 80-90% transmission of light at room temperature. The percentage of light absorbed by these glasses is only 15%. The applicability of these glasses for the fabrication of single-mode optical fibre is being pursued by their high transmission and nearly nonexistent normal dispersion, while a small anomalous dispersion drop in the transmission is noticed at 720 nm in the UV-visible region. Drop in transmission at higher wavelength is explained in terms of absorption/photodarkening effect. Analysis of prepared glasses reveals direct band-gap material; thus, these materials can be used directly in fibre laser preparation. The refractive index obtained from spectra is modelled by Cauchy expression, and it is valid up to 700nm; beyond 700nm, wavelength increase in refractive index is modelled by poly4. Dielectric characteristics are examined and assessed. Ge-Se glasses have a decreasing dielectric constant as the band gap widens, indicating a decreasing trend in dielectric constant with increasing frequency.
References
- Jiri Jemelka, Karel Palka, Petr Janicek, Stanislev Slang, Jiri Jancalek, Michal Kurka and Miroslav Vlcek, Solution Processed Multilayered ThinFilms of Ge20Sb5S75 and Ge20Sb5Se75 chalcogenide glasses, Scientific reports13,16609(2023). https://doi.org/10.1038/s41598-023-43772-w
- J.A.Savage, Optical properties of chalcogenide glasses, J of Non-Cryst. Solids Vol 47, 1, 101-115 (1982).
- T.Babeva, V.Vassilev, P.Gushterova, A.Amova, G.Alexieva, V.Strashilov, P.Petkova, Optical properties of chalcogenide glasses from the system As2Se3-Ag4SSe-PbTe J of optoelectronics and advanced materials vol19, no 3-4, 204-210 (2017). .
- A.B.Seddon, Fluoride glasses, A.E. Comyns, ed. (Wiley 1989), chapter7
- M.Morita, T.Ohmi, E. Hasegawa, M. Kawakami and M. Ohwada, J of Appl.Physics 68, 1272 (1990).
- J.J. Nunes, Ł Sojka, R.W. Crane, D. Furniss, Z.Q. Tang, D. Mabwa, B. Xiao, T.M. Benson, M.C. Farries, N. Kalfagiannis, E. Barney, S. Phang, A.B. Seddon, S. Sujecki Opt. Lett. 46(15), 3504-3507(2021).
- J.S.Sanghera, I.D.Agarwal, L.B.Shaw, L.E.Busse, P.Thielen, V.Nguyen, P.Pureza, S.Bayya, F.Kung, J.of Optoelectronics and Advanced Materials, vol3, no.3,p627-640,2001
- J.Tauc, R.Grigorovici, A.Vancu, Physica status solidi B, 15, 627-637, (1966).
- M.Kastner, Phys.Rev.Lett. 28,355, (1972).
- Ralph Chbeir, Aaron Welton, Matthew Burger, Soumendu Chakarvarti, Shreeram Dash, Siddhesh Bhosle, Kapila Gunashekra, Badriah S.Almutairi, Bernard Goodrman, Matthieu Miccoulaut, Punit Boolchand, J.Am.Ceramic Society 106, 3277-3302 (2023).
- P.Tronc, M.Bensoussan, A.Brenac, C.Sebenne, Phys.Rev.B 8, 5947 (1973).
- E.A Moelwyn-Hughes, Physical chemistry, Pergamon, London 1961.
- H.Rawson, properties and application of glass, Elsevier, Amsterdam, 1980.
- Reddy RR, Nazeer Ahammed Y,Rama Gopal K, et al.,Opt Mat, 10 (1998)95;Reddy RR & Ahammed NY,Infra Phys Technol, 36 (1995) 825.
- Moss TS, Proc Phys Soc B, 63 (1950) 167.
- Moss TS, Photoconductivity in Elements (Butterworth, London), 1952, 61.
- Moss TS, Phys Stat Sol (B) 131(1985), 415.
- H.Tichy, L.Ticha J.Opt.Adv.Mat. 4(2), 381, (2002).
- J.J.Wynne, Phys.Rev.B 178, 1295, (1969).