Vol. 24 No. 2 (2025): Mapana Journal of Sciences
Research Articles

Kinetic Studies of Redox reaction between L-tryptophan and oxo-bridged diiron(III,III) complex ion [Fe2(μ-O)(phen)4(H2O)2]4+

Piyali Mitra
Department of Chemistry, Trivenidevi Bhalotia College, Raniganj, West Bengal, India
Ritam Mukherjee
Department of Chemistry, Trivenidevi Bhalotia College, Raniganj, West Bengal, India

Published 2025-08-23

Keywords

  • Oxo-bridge,
  • diiron(III,III),
  • L-tryptophan,
  • redox,
  • kinetics

Abstract

The title di-iron complex [FeIII2(μ-O)(phen)4(H2O)2]4+(1) (phen= 1,10-phenanthroline) acts a  dibasic acid in aqueous media. However, at pH below 1.6, the amounts of its conjugate bases [FeIII2(μ-O)(phen)4(H2O)(OH)]3+(1a) and [FeIII2(μ-O)(phen)4(OH)2]2+(1b) are negligible (pKa1= 3.71 ± 0.03, pKa2= 5.28 ± 0.07).  In aqueous acidic solutions (pH £1.6), complex 1 is reduced by L-tryptophan to produce [Fe(phen)3]2+ in the presence of externally added phen, following simple first order kinetics. However, at room temperature, the reaction is very slow. With 10 mM tryptophan the reaction takes more than 6 hours to complete. The method of initial rate is used to study the kinetics. The observed rate constants show first-order dependence on the concentrations of both the redox partners. In the pH range of this study, (0.36-1.60) the observed inverse dependence of rate on [H+] is attributed to the fact that the singly deprotonated form of the amino acid is the active reductant.

References

  1. Jr. D. M., Kurtz, Chem. Rev. 90, 585-606 (1990). https :// doi.org/10.1021 / cr00102a002
  2. K. S. Murray, Coord. Chem. Rev. 12, 1- 35 1974); https://doi.org/10.1016/S0010-8545(00)80384-7
  3. R. G. Wilkins,; P. C. Harrington, Adv Inorg Biochem 5, 51-85 (1983). https://pubmed.ncbi.nlm.nih.gov/6382960/
  4. J. Sanders-Loehr,; T. M. Loehr, Adv Inorg Biochem 1, 235-252 (1979).
  5. B. M. Sjoberg; A. Graslund, Adv Inorg Biochem 5, 87- 110 (1983).
  6. P. Reichard; A. Ehrenberg, Science 221, 514- 519 (1983). https://doi.org/10.1126/science.6306767
  7. S. M. Freier, L. L. Duff, D. F. Shriver, I. M. Koltz, Arch Biochem Biophys 205, 449- 463 (1980) https://doi.org/10.1016/0003-
  8. (80)90128-9
  9. A. K. Shiemke, T. M. Loehr, J. Sanders-Loehr, J. Am. Chem. Soc. 106, 4951- 4956 (1984).
  10. https://doi.org/10.1021/ja00329a054
  11. B. M. Sjoberg; T. M. Loehr; J. Sanders-Loehr, Biochem 21, 96-102 (1982). DOI: 10.1021/bi00530a017
  12. B.B. Dhar, R. Mukherjee, S. Mukhopadhyay, R. Banerjee, Eur. J. Inorg. Chem. (2004) 2950.
  13. https://doi.org/10.1002/ejic.200300887
  14. B. Chaudhuri, R. Banerjee, Can. J. Chem. 76, 350 – 355 (1998). https://doi.org/10.1139/v98-004
  15. B. Chaudhuri, R. Banerjee, J. Chem. Soc. Dalton Trans. 20, 3451- 3456 (1998). DOI: 10.1039/A803030H
  16. R. Mukherjee, B. B. Dhar, R. Banerjee, S. Mukhopadhyay, J. Coord. Chem. 59, 1157-1165 (2006).
  17. https://doi.org/10.1080/00958970500410614
  18. R. Mukherjee, B.B. Dhar, R. Banerjee, Wiley Periodicals, Inc. Int. J .Chem. Kinet. 37, 737-743 (2005).
  19. DOI: 10.1002/kin.20125
  20. J. E. Plowman, T. M. Loehr, C. K. Schauer, O.P. Anderson, Inorg. Chem., 23, 3553 - 3559 (1984).
  21. https://doi.org/10.1021/ic00190a024
  22. D. C. Harris, Exploring Chemical Analysis; W.H. Freeman and Company: (New York, NY 2009).