Advancement in Age Estimation in Forensic Science Through Molecular Fingerprinting Techniques – A Review Paper
Published 2025-08-13
Keywords
- Fingerprints,
- molecular fingerprinting,
- sweat compositions,
- age estimation
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Dactyloscopy has long been used for personal identification from the latent fingerprint residues, capable of providing an insight into various factors of an individual, such as age, sex, habits and lifestyle. Various studies have been conducted to precisely identify the changes in activity of sweat glands and the chemical breakdown of fingerprint residues with respect to time. However, a reliable method for accurately estimating or approximating the age of the fingerprint donor is yet to be established. The emerging field of molecular fingerprinting analyses latent fingerprint sweat residue and profiles the components present in it, which aids in personal identification as an individualistic marker specific to each individual. This review article highlights the advancements in estimating the age of the fingerprint donor from latent fingerprint residue and addresses the technical and technological research gaps in the timeline of molecular fingerprinting techniques, as this method holds potential in aiding forensic investigation and criminal profiling from the fingerprints retrieved from the scene of crime.
References
- GM Mong, CE Petersen, and TRW Clauss, Advanced Fingerprint Analysis Project Fingerprint constituents, Oct. 1999. doi:10.2172/14172.
- S. Gungadin, “Sex determination from Fingerprint Ridge density,” Internet Journal of Medical Update - EJOURNAL, vol. 2, no. 2, pp. 4–7, Nov. 2007. doi:10.4314/ijmu.v2i2.39847.
- M. Al-Omari et al., “A portable optical human sweat sensor,” Journal of Applied Physics, vol. 116, no. 18, Nov. 2014, doi: 10.1063/1.4901332.
- S. Cadd, M. Islam, P. Manson, and S. M. Bleay, “Fingerprint composition and aging: A literature review.,” Science & Justice, vol. 55, no. 4, pp. 219–238, Jul. 2015, doi: 10.1016/J.SCIJUS.2015.02.004.
- G. Faria, F. A. L. Marson, A. F. Ribeiro, and J. D. Ribeiro, “The correlation between age and sweat chloride levels in sweat tests.,” Revista Portuguesa De Pneumologia, vol. 23, no. 4, pp. 227–230, Jul. 2017, doi: 10.1016/J.RPPNEN.2016.11.001.
- Á. Sánchez-Andrés, J. A. Barea, N. Rivaldería, C. Alonso-Rodríguez, and E. Gutiérrez-Redomero, “Impact of aging on fingerprint ridge density: Anthropometry and forensic implications in sex inference.,” Science & Justice, vol. 58, no. 5, pp. 323–334, Sep. 2018, doi: 10.1016/J.SCIJUS.2018.05.001.
- M. D. Hladek et al., “Using sweat to measure cytokines in older adults compared to younger adults: A pilot study,” Journal of immunological methods, vol. 454, pp. 1–5, Mar. 2018, doi: 10.1016/j.jim.2017.11.003.
- Czech, A. Szabelak, and A. Sowiński, “Changes in Fingerprints Depending on Physiological Factors,” Journal of Forensic Sciences, vol. 64, no. 3, pp. 711–716, May 2019, doi: 10.1111/1556-4029.13937.
- V. Abrol and G. Babu, “Molecular Fingerprinting a new technique for Personal Identification: An Update,” Indian Journal of Forensic Medicine and Pathology, vol. 14, no. 1, pp. 59–66, Jul. 2021, doi: 10.21088/ijfmp.0974.3383.14121.8.
- Khare, V., Singla, A. A review on the advancements in chemical examination of composition of latent fingerprint residues. Egypt J Forensic Sci 12, 6 (2022). https://doi.org/10.1186/s41935-021-00262-2
- P. S. Hossain and E. Marasco, “Capturing Sweat Essence: Exploring Techniques for Collection and Metabolite Applications,” Sep. 2024, doi: 10.36227/techrxiv.172565659.91260897/v1.
- Kiruthiga U, Govindarajalu Rajesh Babu, Photoluminescence Spectroscopy for Estimating the Age of the Latent Fingerprints: A New Potential Approach, Mapana Journal of Sciences: Vol. 23 No. 2 (2024): Mapana Journal of Sciences
- Kanitakis J. “Anatomy, Histology and Immunohistochemistry of Normal Human Skin,” European journal of dermatology, Jul. 01, 2002. https://pubmed.ncbi.nlm.nih.gov/12095893/
- S. I. Sudha, Biometrics & Fingerprint Analysis, 1st ed. Selective & scientific books, 2013.
- A. A. Frick, A. Girod-Frais, A. Moraleda, and Céline Weyermann, “Latent Fingermark Aging: Chemical Degradation Over Time,” Springer eBooks, pp. 205–235, Jan. 2021, doi: https://doi.org/10.1007/978-3-030-69337-4_7.
- S. Sharma, R. Shrestha, K. Krishan, and Tanuj Kanchan, “Sex estimati- on from fingerprint ridge density. A review of literature,” Acta Biome
- dica Atenei Parmensis, vol. 92, no. 5, 2021, doi: https://doi.org/10.237
- /abm.v92i 5.11471.
- J. R. Sempionatto, J. A. Lasalde-Ramírez, K. Mahato, J. Wang, and W. Gao, “Wearable chemical sensors for biomarker discovery in the omics era,” Nature Reviews Chemistry, vol. 6, no. 12, pp. 899–915, Dec. 2022, doi: https://doi.org/10.1038/s41570-022-00439-w.
- N. Akiba, K. Kuroki, K. Kurosawa, and K. Tsuchiya, “Visualization of Aged Fingerprints with an Ultraviolet Laser,” Journal of Forensic Sciences, vol. 63, no. 2, pp. 556–562, Jul. 2017, doi: https://doi.org/10.1111/1556-4029.13588.
- van Dam et al., “Oxidation Monitoring by Fluorescence Spectroscopy Reveals the Age of Fingermarks,” Angewandte Chemie International Edition, vol. 53, no. 24, pp. 6272–6275, May 2014, doi: https://doi.org/10. 1002/anie.201402740.
- J. Heikenfeld et al., “Wearable sensors: modalities, challenges, and prospects,” Lab on a Chip, vol. 18, no. 2, pp. 217–248, 2018, doi: https://doi.org/10.1039/c7lc00914c.
- G. Jayakala and L. R. Sudha, “Fingerprint analysis for age estimation using deep learning models (ResNet50 and VGG-16),” International journal of health sciences, pp. 6781–6789, May 2022, doi: https://doi.org/10.53730/ij hs.v6ns3.7529.