Vol. 24 No. 2 (2025): Mapana Journal of Sciences
Research Articles

Synthesis, Structural Characterization, and Quantum Chemical Analysis of (E)-2-(1-(4-Bromophenyl)ethylidene)hydrazinecarbothioamide: A Potential Candidate for Biological Applications

R. R. Saravanan
Department of Physics, Bon Secours College for Women (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli), Thanjavur, Tamil Nadu, India
M. Karthika
Department of Physics, Bon Secours College for Women (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli), Thanjavur, Tamil Nadu
H. Aafiya Shameem
Department of Physics, Bon Secours College for Women (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli), Thanjavur, Tamil Nadu, India
R. Mendoza Meroño
Faculty of Chemistry, Department of Physical and Analytical Chemistry, University Oviedo, C/ Julian Claveria, 8, 33006 Oviedo, Asturias, Spain

Published 2025-07-22

Keywords

  • EBEHC,
  • HMG-CoA,
  • Hirshfeld Surface Analysis,
  • FT-IR,
  • FT-Raman

Abstract

This study reports the synthesis, structural characterisati- on, and computational analysis of a novel compound, (E)-2-(1-(4-bromophenyl)ethylidene)hydrazine (EBEHC), synthesised via condensation of 1-(4-bromophenyl)ethano ne and thiosemicarbazide in methanol. Yellow single crystals were obtained through recrystallisation. Single-crystal X-ray diffraction revealed that EBEHC crystallises in a monoclinic system (space group P21/c), with a unit cell volume of 1103.56 ų. Experimental and DFT-calculated geometries showed a strong correlation, with bond length and angle deviations within 0.02 Å and 3°, respectively. Conformational analysis identified R1(a) as the most stable conformer (energy: -9147715.587 kJ/mol), while R2(b) was the least stable (ΔE: +2874.87 kJ/mol). FT-IR and DFT analyses confirmed N–H stretching near 3444 cm⁻¹ and C–Br vibrations near 445 cm⁻¹. Hirshfeld surface analysis revealed significant intermolecular interactions—hydrogen bonding (45.2%) and halogen contacts (19.4%). Molecular docking indicated favourable binding with cholesterol-reducing targets, suggesting potential anti-cholesterol properties. These findings highlight EBEHC’s promising structural, spectroscopic, and biological characteristics for future therapeutic applications.

References

  1. Yang, R.L., Shi, Y.H., Hao, G., Li, W., Le, G.W., 2008. Increasing oxidative stress with progressive hyperlipidemia in
  2. human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 43, 154–158.
  3. https://doi.org/10.3164/jcbn.2008044
  4. Shaik, A.H., Mohammed, A.K., Sammeturi, M., Al Omar, S.Y., Mohammad, A., Kodidhela, L.D., 2020. Maslinic acid
  5. ameliorate electrolytes, membrane bound ATPases, antioxidants and histopathology in isoprenaline attenuated
  6. myocardial toxicity in rats. J. King Saud Univ. - Sci. 32, 1055–1059. https://doi.org/ 10.1016/j.jksus.2019.09.015
  7. Hill, M.F., Singal, P.K., 1996. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial
  8. infarction in rats. Am. J. Pathol. 148, 291–300.
  9. Mishra, D., Naskar, S., Drew, M.G.B., Chattopadhyay, S.K., 2006. Inorganica Chimica Acta, 359, 585–592. https://doi.org/
  10. 1016/j.ica.2005.12.038
  11. Labisbal, E., Haslow, K.D., Sousa-Pedrares, A., Valdés-Martínez, J., Hernández-Ortega, S., West, D.X., 2003. Polyhedron,
  12. , 2831–2837. https://doi.org/10.1016/S0277-5387(03)00361-1
  13. Singh, R.V., Fahmi, N., Biyala, M.K., 2005. Journal of the Iranian Chemical Society, 2, 40–46.
  14. https://doi.org/10.1007/BF03245978
  15. Finch, R.A., Liu, M.C., Cory, A.H., Cory, J.G., Sartorelli, A.C., 1999. Adv. Enzyme Regul. 39, 3–12. https://doi.org/10.1016/S0
  16. -2571(98)00012-3
  17. Bethesda, M.D., 2001. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel… NIH
  18. Publication no. 01-3670. https://doi.org/10.1016/S0895-7061(01)02318-8
  19. Appelkvist, E.L., Kalen, A., 1989. Biosynthesis of dolichol by rat liver peroxisomes. Eur. J. Biochem. 185, 503–509.
  20. https://doi.org/10.1111/j.1432-1033.1989.tb15139.x
  21. Hashimoto, F., Hamada, S., Hayashi, H., 1989. Biol. Pharm. Bull. 20, 315–321. https://doi.org/10.1248/bpb.20.315
  22. National Collaborating Centre for Primary Care, 2010. NICE Clinical Guideline 67: Lipid Modification.
  23. Singh, K., Barwa, M.S., Tyagi, P., 2005. European Journal of Medicinal Chemistry, 40, 1249–1255.
  24. https://doi.org/10.1016/j. ejmech.2005.06.016
  25. Mishra, A.P., Tiwari, A.K., Singh, M.M., 2006. Journal of the Indian Chemical Society, 83, 577–581.
  26. Frisch, M.J., et al., 2009. Gaussian-09, Revision A.01, Gaussian, Inc., Wallingford, CT. Software reference
  27. Schlegel, H.B., 1982. J. Comput. Chem. 3, 214. https://doi.org/ 10.1002/jcc.540030212
  28. Hohenberg, P., Kohn, W., 1964. Phys. Rev. B 136, 864. https://doi.org/10.1103/PhysRev.136.B864
  29. Becke, D., 1993. J. Chem. Phys. 98, 5648. https://doi.org/10.1063/1.464913
  30. Lee, C., Yang, W., Parr, R.G., 1988. Phys. Rev. B 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  31. Frisch, A., Neilson, A.B., Holder, A.J., 2000. GaussView User Manual, Gaussian, Inc., Pittsburgh. Software manual
  32. OriginLab Corp., 2003. Origin 7.5, Northampton, MA. Software
  33. Tomasi, J., 1981. In: Politzer, P., Truhlar, D. (Eds.), Chemical Applications of Atomic and Molecular Electrostatic
  34. Potentials. Plenum Press, New York, pp. 257–294. https://doi.org/10.1007/978-1-4899-0415-7_11
  35. Weinstein, H., Maayani, S., Srebrenik, S., Cohen, S., Sokolovsky, M., 1975. Mol. Pharmacol. 11, 671–689.
  36. Perutz, M., 1978. Science 201, 1187–1191. https://doi.org/10.11 26/science.694514
  37. Warshel, A., 1981. Acc. Chem. Res. 14, 284–290. https://doi.org/10.1021/ar00068a001
  38. Krishnakumar, V., Ramasamy, R., 2008. Spectrochim. Acta A 69, 8–17. https://doi.org/10.1016/j.saa.2007.03.030
  39. Varsanyi, G., 1974. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Adam Hilger. Vols. 1–2.
  40. Book
  41. Thilagavathi, G., Arivazhagan, M., 2010. Spectrochim. Acta A79, 389–395. https://doi.org/10.1016/j.saa.2010.02.013
  42. Yadav, R.A., Singh, I., 2003. Indian J. Pure Appl. Phys. 17, 625. Morgan, K.J., 1961. J. Chem. Soc., 2151–2159.
  43. https://doi.org/ 10.1039/JR9610002151
  44. Spackman, M.A., Jayatilaka, D., 2009. CrystEngComm 11, 19–32. https://doi.org/10.1039/B818330A
  45. Rohl, A.L., Moret, M., Kaminsky, W., Claborn, K., Mckinnson, J.J., Kahr, B., 2008. Cryst Growth Des. 8, 12.
  46. https://doi.org/10. 1021/cg070343w