Synthesis, Structural Characterization, and Quantum Chemical Analysis of (E)-2-(1-(4-Bromophenyl)ethylidene)hydrazinecarbothioamide: A Potential Candidate for Biological Applications
Published 2025-07-22
Keywords
- EBEHC,
- HMG-CoA,
- Hirshfeld Surface Analysis,
- FT-IR,
- FT-Raman
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
This study reports the synthesis, structural characterisati- on, and computational analysis of a novel compound, (E)-2-(1-(4-bromophenyl)ethylidene)hydrazine (EBEHC), synthesised via condensation of 1-(4-bromophenyl)ethano ne and thiosemicarbazide in methanol. Yellow single crystals were obtained through recrystallisation. Single-crystal X-ray diffraction revealed that EBEHC crystallises in a monoclinic system (space group P21/c), with a unit cell volume of 1103.56 ų. Experimental and DFT-calculated geometries showed a strong correlation, with bond length and angle deviations within 0.02 Å and 3°, respectively. Conformational analysis identified R1(a) as the most stable conformer (energy: -9147715.587 kJ/mol), while R2(b) was the least stable (ΔE: +2874.87 kJ/mol). FT-IR and DFT analyses confirmed N–H stretching near 3444 cm⁻¹ and C–Br vibrations near 445 cm⁻¹. Hirshfeld surface analysis revealed significant intermolecular interactions—hydrogen bonding (45.2%) and halogen contacts (19.4%). Molecular docking indicated favourable binding with cholesterol-reducing targets, suggesting potential anti-cholesterol properties. These findings highlight EBEHC’s promising structural, spectroscopic, and biological characteristics for future therapeutic applications.
References
- Yang, R.L., Shi, Y.H., Hao, G., Li, W., Le, G.W., 2008. Increasing oxidative stress with progressive hyperlipidemia in
- human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 43, 154–158.
- https://doi.org/10.3164/jcbn.2008044
- Shaik, A.H., Mohammed, A.K., Sammeturi, M., Al Omar, S.Y., Mohammad, A., Kodidhela, L.D., 2020. Maslinic acid
- ameliorate electrolytes, membrane bound ATPases, antioxidants and histopathology in isoprenaline attenuated
- myocardial toxicity in rats. J. King Saud Univ. - Sci. 32, 1055–1059. https://doi.org/ 10.1016/j.jksus.2019.09.015
- Hill, M.F., Singal, P.K., 1996. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial
- infarction in rats. Am. J. Pathol. 148, 291–300.
- Mishra, D., Naskar, S., Drew, M.G.B., Chattopadhyay, S.K., 2006. Inorganica Chimica Acta, 359, 585–592. https://doi.org/
- 1016/j.ica.2005.12.038
- Labisbal, E., Haslow, K.D., Sousa-Pedrares, A., Valdés-Martínez, J., Hernández-Ortega, S., West, D.X., 2003. Polyhedron,
- , 2831–2837. https://doi.org/10.1016/S0277-5387(03)00361-1
- Singh, R.V., Fahmi, N., Biyala, M.K., 2005. Journal of the Iranian Chemical Society, 2, 40–46.
- https://doi.org/10.1007/BF03245978
- Finch, R.A., Liu, M.C., Cory, A.H., Cory, J.G., Sartorelli, A.C., 1999. Adv. Enzyme Regul. 39, 3–12. https://doi.org/10.1016/S0
- -2571(98)00012-3
- Bethesda, M.D., 2001. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel… NIH
- Publication no. 01-3670. https://doi.org/10.1016/S0895-7061(01)02318-8
- Appelkvist, E.L., Kalen, A., 1989. Biosynthesis of dolichol by rat liver peroxisomes. Eur. J. Biochem. 185, 503–509.
- https://doi.org/10.1111/j.1432-1033.1989.tb15139.x
- Hashimoto, F., Hamada, S., Hayashi, H., 1989. Biol. Pharm. Bull. 20, 315–321. https://doi.org/10.1248/bpb.20.315
- National Collaborating Centre for Primary Care, 2010. NICE Clinical Guideline 67: Lipid Modification.
- Singh, K., Barwa, M.S., Tyagi, P., 2005. European Journal of Medicinal Chemistry, 40, 1249–1255.
- https://doi.org/10.1016/j. ejmech.2005.06.016
- Mishra, A.P., Tiwari, A.K., Singh, M.M., 2006. Journal of the Indian Chemical Society, 83, 577–581.
- Frisch, M.J., et al., 2009. Gaussian-09, Revision A.01, Gaussian, Inc., Wallingford, CT. Software reference
- Schlegel, H.B., 1982. J. Comput. Chem. 3, 214. https://doi.org/ 10.1002/jcc.540030212
- Hohenberg, P., Kohn, W., 1964. Phys. Rev. B 136, 864. https://doi.org/10.1103/PhysRev.136.B864
- Becke, D., 1993. J. Chem. Phys. 98, 5648. https://doi.org/10.1063/1.464913
- Lee, C., Yang, W., Parr, R.G., 1988. Phys. Rev. B 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Frisch, A., Neilson, A.B., Holder, A.J., 2000. GaussView User Manual, Gaussian, Inc., Pittsburgh. Software manual
- OriginLab Corp., 2003. Origin 7.5, Northampton, MA. Software
- Tomasi, J., 1981. In: Politzer, P., Truhlar, D. (Eds.), Chemical Applications of Atomic and Molecular Electrostatic
- Potentials. Plenum Press, New York, pp. 257–294. https://doi.org/10.1007/978-1-4899-0415-7_11
- Weinstein, H., Maayani, S., Srebrenik, S., Cohen, S., Sokolovsky, M., 1975. Mol. Pharmacol. 11, 671–689.
- Perutz, M., 1978. Science 201, 1187–1191. https://doi.org/10.11 26/science.694514
- Warshel, A., 1981. Acc. Chem. Res. 14, 284–290. https://doi.org/10.1021/ar00068a001
- Krishnakumar, V., Ramasamy, R., 2008. Spectrochim. Acta A 69, 8–17. https://doi.org/10.1016/j.saa.2007.03.030
- Varsanyi, G., 1974. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Adam Hilger. Vols. 1–2.
- Book
- Thilagavathi, G., Arivazhagan, M., 2010. Spectrochim. Acta A79, 389–395. https://doi.org/10.1016/j.saa.2010.02.013
- Yadav, R.A., Singh, I., 2003. Indian J. Pure Appl. Phys. 17, 625. Morgan, K.J., 1961. J. Chem. Soc., 2151–2159.
- https://doi.org/ 10.1039/JR9610002151
- Spackman, M.A., Jayatilaka, D., 2009. CrystEngComm 11, 19–32. https://doi.org/10.1039/B818330A
- Rohl, A.L., Moret, M., Kaminsky, W., Claborn, K., Mckinnson, J.J., Kahr, B., 2008. Cryst Growth Des. 8, 12.
- https://doi.org/10. 1021/cg070343w