Vol. 24 No. 3 (2025): Mapana Journal of Sciences
Research Articles

Spectrophotometric Investigations of Charge Transfer Complexes formed between imidazoles and DMAD

Pratibha Mittal
Department of Chemistry, IIS (Deemed to be University), Jaipur, 302020, Rajasthan, India
Manisha Patni
Department of Chemistry, IIS (Deemed to be University), Jaipur, 302020, Rajasthan, India
Bio
Raakhi Gupta
Department of Chemistry, IIS (Deemed to be University), Jaipur, 302020, Rajasthan, India
Bio

Published 2025-09-29

Keywords

  • Imidazole,
  • DMAD,
  • UV studies,
  • DFT studies,
  • Global reactivity descriptiors,
  • FMO analysis
  • ...More
    Less

Abstract

Four novel charge transfer (CT) complexes were synthesized between imidazole-based donors and dimethyl acetylenedicarboxylate (DMAD) as the electron acceptor at room temperature in dichloromethane and acetone. CT complex formation was confirmed by characteristic n → π* and π → π* electronic transitions in UV-Vis spectra. Stoichiometric analysis using Job's method revealed 1:1 and 2:1 donor–acceptor ratios for imidazole and N-methylimidazole, respectively. Among the synthesized complexes, those containing N-methylimidazole displayed higher stability constants, negative Gibbs free energy changes (ΔG⁰), and molar extinction coefficients (ε), reflecting spontaneous as well as stable complexation. Additionally, the lowest CT transition energies (ECT) in dichloromethane confirmed stronger donor–acceptor interactions in the less polar solvent. DFT calculations at the B3LYP/6-31+G(d) level were carried out to further validate donor strength. N-methylimidazole exhibited the greater HOMO energy, low HOMO–LUMO energy gap (ΔE) and the most favourable global reactivity descriptors—chemical softness and chemical potential—affirming its better electron-donating ability compared to imidazole.

References

  1. R. S. Mulliken, “Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents1,” J. Am. Chem. Soc., vol. 72, no. 1, pp. 600–608, Jan. 1950, doi: 10.1021/ja01157a151.
  2. R. S. Mulliken, “The interaction of electron donors and acceptors,” J. Chim. Phys., vol. 61, pp. 20–38, 1964, doi: 10.1051/jcp/1964610020.
  3. E. M. Kosower, “Molecular Interaction: Organic Charge-Transfer Complexes . R. Foster. Academic Press, New York, 1969. xii, 472 pp., illus. $22.50. Organic Chemistry, vol. 15.,” Science, vol. 170, no. 3962, pp. 1076–1076, Dec. 1970, doi: 10.1126/science.170.3962.1076.a.
  4. W. Wang, L. Luo, P. Sheng, J. Zhang, and Q. Zhang, “Multifunctional Features of Organic Charge‐Transfer Complexes: Advances and Perspectives,” Chem. – Eur. J., vol. 27, no. 2, pp. 464–490, Jan. 2021, doi: 10.1002/chem.202002640.
  5. D. Shen, W.-C. Chen, M.-F. Lo, and C.-S. Lee, “Charge-transfer complexes and their applications in optoelectronic devices,” Mater. Today Energy, vol. 20, p. 100644, Jun. 2021, doi: 10.1016/j.mtener.2021.100644.
  6. M. Baharfar, A. C. Hillier, and G. Mao, “Charge‐Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications,” Adv. Mater., p. 2406083, Jul. 2024, doi: 10.1002/adma.202406083.
  7. B. R. Hood et al., “Synthesis and Optical and Nonlinear Optical Properties of Linear and Two-Dimensional Charge Transfer Chromophores Based on Polyoxometalates,” Inorg. Chem., vol. 63, no. 51, pp. 24250–24261, Dec. 2024, doi: 10.1021/acs.inorgchem.4c04179.
  8. S. Naskar and M. Das, “The effect of metal-to-ligand charge transfer on linear and nonlinear optical properties of hexaphyrin and metallo-hexaphyrins,” Mol. Phys., vol. 123, no. 9, p. e2386385, May 2025, doi: 10.1080/00268976.2024.2386385.
  9. K. Mohammedsaleh Katubi, M. Saqib, M. Sulaman, Z. A. Alrowaili, and M. S. Al-Buriahi, “Designing high-efficiency organic semi-conductors for organic photodetectors assisted by machine learning and property prediction,” Chem. Phys., vol. 582, p. 112295, Jun. 2024, doi: 10.1016/j.chemphys.2024.112295.
  10. T. Ng, Q. Yang, H. Mo, M. Lo, W. Zhang, and C. Lee, “Wide‐Spectral Photoresponse of Black Molybdenum Oxide Photodetector via Sub‐Bandgap Electronic Transition,” Adv. Opt. Mater., vol. 1, no. 10, pp. 699–702, Oct. 2013, doi: 10.1002/adom.201300220.
  11. M. Li, X. Zhou, W. Ding, S. Guo, and N. Wu, “Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II),” Biosens. Bioelectron., vol. 41, pp. 889–893, Mar. 2013, doi: 10.1016/j.bios.2012.09.060.
  12. K. Song, S.-J. Hwang, Y. Jeon, and Y. Yoon, “The Biomedical Applications of Biomolecule Integrated Biosensors for Cell Monitoring,” Int. J. Mol. Sci., vol. 25, no. 12, p. 6336, Jun. 2024, doi: 10.3390/ijms25126336.
  13. H. J. Wörner et al., “Charge migration and charge transfer in molecular systems,” Struct. Dyn., vol. 4, no. 6, Nov. 2017, doi: 10.1063/1.4996505.
  14. W. Huang et al., “Trapping highly reactive photoinduced charge-transfer complex between amine and imide by light,” Chem, vol. 10, no. 9, pp. 2829–2843, Sep. 2024, doi: 10.1016/j.chempr.2024.05.005.
  15. S. Wang, N. Hu, Y. Huang, and W. Deng, “Charge-transfer complex promotes energy storage performance of single-moiety organic electrode materials in aqueous zinc-ion battery at low temperatures,” Appl. Surf. Sci., vol. 619, p. 156725, May 2023, doi: 10.1016/j.apsusc.2023.156725.
  16. “Organic Electronic Memory Devices,” in Electrical Memory Materials and Devices, The Royal Society of Chemistry, 2015, pp. 1–53. doi: 10.1039/9781782622505-00001.
  17. C. Mathur, R. Gupta, and R. K. Bansal, “Organic Donor‐Acceptor Complexes As Potential Semiconducting Materials,” Chem. – Eur. J., vol. 30, no. 23, Apr. 2024, doi: 10.1002/chem.202304139.
  18. M.-A. Codescu et al., “Ultrafast Proton Transfer Pathways Mediated by Amphoteric Imidazole,” J. Phys. Chem. Lett., vol. 14, no. 20, pp. 4775–4785, May 2023, doi: 10.1021/acs.jpclett.3c00595.
  19. F.-R. Lin, Z.-Y. Liu, G.-Q. Zhang, J. Zhang, and X.-M. Ren, “Understanding proton conduction enhancement of MOF-802 through in situ incorporation of imidazole into its channels,” Inorg. Chem. Commun., vol. 157, p. 111340, Nov. 2023, doi: 10.1016/j.inoche.2023.111340.
  20. D. Tzaras, M. Voigtländer, B. M. Zimmermann, T. Rüffer, and J. F. Teichert, “Synthesis of a Library of Bifunctional N‐Heterocyclic Carbene Ligand Precursors with Hydrogen Bond Donor Subunits,” Eur. J. Org. Chem., vol. 28, no. 27, p. e202500389, Jul. 2025, doi: 10.1002/ejoc.202500389.
  21. R. Silva Moratório De Moraes et al., “An overview on generation and general properties of N-heterocyclic carbenes: Applications of 1,2,4-triazolium carbenes as metal free organocatalysts,” Arab. J. Chem., vol. 17, no. 2, p. 105527, Feb. 2024, doi: 10.1016/j.arabjc.2023.105527.
  22. K. T. Movellan, M. Wegstroth, K. Overkamp, A. Leonov, S. Becker, and L. B. Andreas, “Imidazole–Imidazole Hydrogen Bonding in the pH-Sensing Histidine Side Chains of Influenza A M2,” J. Am. Chem. Soc., vol. 142, no. 6, pp. 2704–2708, Feb. 2020, doi: 10.1021/jacs.9b10984.
  23. E. Yu. Tupikina, M. V. Sigalov, O. Alkhuder, and P. M. Tolstoy, “Charge Relay Without Proton Transfer: Coupling of Two Short Hydrogen Bonds via Imidazole in Models of Catalytic Triad of Serine Protease Active Site,” ChemPhysChem, vol. 25, no. 12, p. e202300970, Jun. 2024, doi: 10.1002/cphc.202300970.
  24. Z. Li et al., “Simulating Metal-Imidazole Complexes,” J. Chem. Theory Comput., vol. 20, no. 15, pp. 6706–6716, Aug. 2024, doi: 10.1021/acs.jctc.4c00581.
  25. X.-W. Zhu, D. Luo, X.-P. Zhou, and D. Li, “Imidazole-based metal-organic cages: Synthesis, structures, and functions,” Coord. Chem. Rev., vol. 455, p. 214354, Mar. 2022, doi: 10.1016/j.ccr.2021.214354.
  26. L. Vrban et al., “Proton and Metal Dication Affinities of Tetracyclic Imidazo[4,5-b]Pyridine-Based Molecules: Insights from Mass Spectrometry and DFT Analysis,” Molecules, vol. 30, no. 13, p. 2684, Jun. 2025, doi: 10.3390/molecules30132684.
  27. J. Żygowska, M. Orlikowska, I. Zhukov, W. Bal, and A. Szymańska, “Copper interaction with cystatin C: effects on protein structure and oligomerization,” FEBS J., vol. 291, no. 9, pp. 1974–1991, May 2024, doi: 10.1111/febs.17092.
  28. P. Sharma, C. LaRosa, J. Antwi, R. Govindarajan, and K. A. Werbovetz, “Imidazoles as Potential Anticancer Agents: An Update on Recent Studies,” Molecules, vol. 26, no. 14, p. 4213, Jul. 2021, doi: 10.3390/molecules26144213.
  29. H. A. Al-Ghamdi et al., “Synthesis and Biological Evaluation of Novel Imidazole Derivatives as Antimicrobial Agents,” Biomolecules, vol. 14, no. 9, p. 1198, Sep. 2024, doi: 10.3390/biom14091198.
  30. K. Elgammal and M. Maußner, “A Quantum Computing Approach to Simulating Corrosion Inhibition,” 2024, arXiv. doi: 10.48550/ARXIV.2412.00951.
  31. N. Sharma, M. Kour, R. Gupta, and R. K. Bansal, “A new cross-conjugated mesomeric betaine,” RSC Adv., vol. 11, no. 41, pp. 25296–25304, 2021, doi: 10.1039/D1RA03981D.
  32. H. Wang, T. Lu, T. He, and D. Chen, “Theoretical Studies on the Structure and Spectrum of Imidazole-Chloranil Charge Transfer Complex,” Chin. J. Chem. Phys., vol. 21, no. 6, pp. 560–568, Dec. 2008, doi: 10.1088/1674-0068/21/06/560-568.
  33. T. Murata, Y. Morita, Y. Yakiyama, and K. Nakasuji, “Synthesis, crystal structure, and charge-transfer complexes of TTF derivatives having two imidazole hydrogen-bonding units,” Phys. B Condens. Matter, vol. 405, no. 11, pp. S41–S44, Jun. 2010, doi: 10.1016/j.physb.2009.10.022.
  34. K. Alam and I. M. Khan, “Crystallographic, dynamic and Hirshfeld surface studies of charge transfer complex of imidazole as a donor with 3,5-dinitrobenzoic acid as an acceptor: Determination of various physical parameters,” Org. Electron., vol. 63, pp. 7–22, Dec. 2018, doi: 10.1016/j.orgel.2018.08.037.
  35. Y. Morita, T. Murata, and K. Nakasuji, “Cooperation of Hydrogen-Bond and Charge-Transfer Interactions in Molecular Complexes in the Solid State,” Bull. Chem. Soc. Jpn., vol. 86, no. 2, pp. 183–197, Feb. 2013, doi: 10.1246/bcsj.20120241.
  36. I. M. Khan, K. Alam, M. J. Alam, and M. Ahmad, “Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: single crystal XRD, experimental and DFT/TD-DFT studies,” New J. Chem., vol. 43, no. 23, pp. 9039–9051, 2019, doi: 10.1039/C9NJ00332K.
  37. L. Miyan, S. Qamar, and A. Ahmad, “Synthesis, characterization and spectrophotometric studies of charge transfer interaction between donor imidazole and π acceptor 2‚4-dinitro-1-naphthol in various polar solvents,” J. Mol. Liq., vol. 225, pp. 713–722, Jan. 2017, doi: 10.1016/j.molliq.2016.10.126.
  38. A. Mostafa and H. S. Bazzi, “Synthesis and spectroscopic studies on charge–transfer molecular complexes formed in the reaction of imidazole and 1-benzylimidazole with σ- and π-acceptors,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 79, no. 5, pp. 1613–1620, Sep. 2011, doi: 10.1016/j.saa.2011.05.021.
  39. T. Murata et al., “Hydrogen-Bond Interaction in Organic Conductors: Redox Activation, Molecular Recognition, Structural Regulation, and Proton Transfer in Donor−Acceptor Charge-Transfer Complexes of TTF-Imidazole,” J. Am. Chem. Soc., vol. 129, no. 35, pp. 10837–10846, Sep. 2007, doi: 10.1021/ja072607m.
  40. M. R. Ganjali, P. Norouzi, S. Shirvani-Arani, and A. Kakanezhadifard, “Synthesis of a charge-transfer complex of (1,3-diphenyldihydro-1H-imidazole)-4,5-dione dioxide with iodide and its application to the development of a highly selective and sensitive triiodide PVC-membrane electrode,” J. Anal. Chem., vol. 62, no. 3, pp. 279–284, Mar. 2007, doi: 10.1134/S106193480703015X.
  41. F. K. Bine, N. S. Tasheh, and J. N. Ghogomu, “A Quantum Chemical Screening of Two Imidazole-Chalcone Hybrid Ligands and Their Pd, Pt and Zn Complexes for Charge Transport and Nonlinear Optical (NLO) Properties: A DFT Study,” Comput. Chem., vol. 09, no. 04, pp. 215–237, 2021, doi: 10.4236/cc.2021.94012.
  42. H. Demirhan, M. Arslan, M. Zengin, and M. Kucukislamoglu, “Investigation of Charge Transfer Complexes Formed between Mirtazapine and Someπ-Acceptors,” J. Spectrosc., vol. 2013, pp. 1–7, 2013, doi: 10.1155/2013/875953.
  43. H. A. Benesi and J. H. Hildebrand, “A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons,” J. Am. Chem. Soc., vol. 71, no. 8, pp. 2703–2707, Aug. 1949, doi: 10.1021/ja01176a030.
  44. K. M. Al-Ahmary, M. M. El-Kholy, I. A. Al-Solmy, and M. M. Habeeb, “Spectroscopic studies and molecular orbital calculations on the charge transfer reaction between DDQ and 2-aminopyridine,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 110, pp. 343–350, Jun. 2013, doi: 10.1016/j.saa.2013.03.055.
  45. D. Vernez et al., “Airborne nano-TiO 2 particles: An innate or environmentally-induced toxicity?,” J. Photochem. Photobiol. Chem., vol. 343, pp. 119–125, Jun. 2017, doi: 10.1016/j.jphotochem.2017.04.022.
  46. J. M. Juma and S. A. Vuai, “Computational studies of the thermodynamic properties, and global and reactivity descriptors of fluorescein dye derivatives in acetonitrile using density functional theory,” J. Chem. Res., vol. 45, no. 7–8, pp. 800–805, Jul. 2021, doi: 10.1177/1747519821994518.
  47. B. Solanki, P. Sharma, P. Ranjan, P. Kumar, and T. Chakraborty, “A computational study of double perovskites A2BI6 (A = Cs, K, Rb; B = Pt, Sn) invoking density functional theory,” J. Phys. Org. Chem., vol. 36, no. 12, Dec. 2023, doi: 10.1002/poc.4519.
  48. J. Yu, N. Q. Su, and W. Yang, “Describing Chemical Reactivity with Frontier Molecular Orbitalets,” JACS Au, vol. 2, no. 6, pp. 1383–1394, Jun. 2022, doi: 10.1021/jacsau.2c00085.
  49. N. F. Al Harby, M. El Batouti, and E.-S. H. EL-mossalamy, “Molecular spectroscopic kinetic and computational studies on charge transfer complexes of dibenzothiophene azomethine with nitrobenzene as π-acceptors and its antibacterial effect,” Polym. Bull., vol. 81, no. 5, pp. 3995–4012, Apr. 2024, doi: 10.1007/s00289-024-05145-9.