Spectrophotometric Investigations of Charge Transfer Complexes formed between Imidazoles and DMAD
Published 2025-09-29
Keywords
- Imidazole, DMAD, Formation Constant, Molar Extinction Coefficient, Standard Free Energy, Transition Energy
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Four novel charge transfer (CT) complexes were synthesized between imidazole-based donors and dimethyl acetylenedicarboxylate (DMAD) as the electron acceptor, in dichloromethane and acetone at room temperature. The formation of CT complexes was confirmed by characteristic n → π* and π → π* electronic transitions in the UV-Vis spectra. Stoichiometric analysis using Job's method revealed 1:1 and 2:1 donor–acceptor ratios for imidazole and N-methylimidazole, respectively. Among the synthesized complexes, those involving N-methylimidazole exhibited the highest formation constants (KCT), molar extinction coefficients (ε), and negative Gibbs free energy changes (ΔG⁰), indicating spontaneous and stable complexation. Additionally, the lowest CT transition energies (ECT) in dichloromethane confirmed stronger donor–acceptor interactions in this less polar solvent.
To further validate donor strength, DFT calculations were performed at the B3LYP/6-31+G(d) level. N-methylimidazole exhibited the highest HOMO energy, lowest HOMO–LUMO energy gap (ΔE), and the most favorable global reactivity descriptors—chemical softness and chemical potential—affirming its better electron-donating ability.
References
- . Mulliken, R. S. (1950). Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents1. Journal of the American Chemical Society, 72(1), 600–608. https://doi.org/10.1021/ja01157a151
- . Mulliken, R. S. (1964). The interaction of electron donors and acceptors. Journal de Chimie Physique, 61, 20–38. https://doi.org/10.1051/jcp/1964610020
- . Foster, R. (1969). Organic Charge-transfer Complexes, 51, Academic Press.
- . Goetz, K. P., Vermeulen, D., Payne, M. E., Kloc, C., McNeil, L. E., & Jurchescu, O. D. (2014). Charge-transfer complexes: New perspectives on an old class of compounds. J. Mater. Chem. C, 2(17), 3065–3076. https://doi.org/10.1039/c3tc32062f
- . Gershenson, M. E., Podzorov, V., & Morpurgo, A. F. (2006). Colloquium: Electronic transport in single-crystal organic transistors. Reviews of Modern Physics, 78(3), 973–989. https://doi.org/10.1103/revmodphys.78.973
- . Wang, W., Luo, L., Sheng, P., Zhang, J., & Zhang, Q. (2021). Multifunctional Features of Organic Charge‐Transfer Complexes: Advances and Perspectives. Chemistry – A European Journal, 27(2), 464–490. https://doi.org/10.1002/chem.202002640
- . Shen, D., Chen, W.-C., Lo, M.-F., & Lee, C.-S. (2021). Charge-transfer complexes and their applications in optoelectronic devices. Materials Today Energy, 20, 100644. https://doi.org/10.1016/j.mtener.2021.100644
- . Grabowski, Z. R., Rotkiewicz, K., & Rettig, W. (2003). Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chemical Reviews, 103(10), 3899–4032. https://doi.org/10.1021/cr940745l
- . Alves, H., Molinari, A. S., Xie, H., & Morpurgo, A. F. (2008). Metallic conduction at organic charge-transfer interfaces. Nature Materials, 7(7), 574–580. https://doi.org/10.1038/nmat2205
- . Jeszka, J. K., Ulański, J., & Kryszewski, M. (1981). Conductive polymer: Reticulate doping with charge-transfer complex. Nature, 289(5796), 390–391. https://doi.org/10.1038/289390a0
- . Hasani, M., & Shariati-Rad, M. (2015). Kinetic and thermodynamic studies of charge-transfer complex formation between imipramine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (ddq) in acetonitrile and dichloromethane solutions. South African Journal of Chemistry, 68. https://doi.org/10.17159/0379-4350/2015/v68a28
- . AL-Attas, A. S., Habeeb, M. M., & AL-Raimi, D. S. (2009). Synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol. Journal of Molecular Structure, 928 (1–3), 158 -170 https://doi.org/10.1016/j.molstruc.2009.03.025
- . Ng, T., Yang, Q., Mo, H., Lo, M., Zhang, W., & Lee, C. (2013). Wide‐Spectral Photoresponse of Black Molybdenum Oxide Photodetector via Sub‐Bandgap Electronic Transition. Advanced Optical Materials, 1(10), 699–702. https://doi.org/10.1002/adom.201300220
- . Wang, J. B., Li, W. L., Chu, B., Chen, L. L., Zhang, G., Su, Z. S., Chen, Y. R., Yang, D. F., Zhu, J. Z., & Wu, S. H. (2010). Visible-blind ultraviolet photo-detector using tris-(8-hydroxyquinoline) rare earth as acceptors and the effects of the bulk and interfacial exciplex emissions on the photo-responsivity. Organic Electronics, 11(7), 1301–1306. https://doi.org/10.1016/j.orgel.2010.03.013
- . Wu, S. H., Lo, M. F., Chen, Z. Y., Ng, T. W., Hu, X., Mo, H. W., Wu, C., Li, W. L., & Lee, C. S. (2012). Simple near‐infrared photodetector based on charge transfer complexes formed in molybdenum oxide doped N,N′‐di(naphthalene‐1‐yl)‐N,N′‐diphenyl‐benzidine. Physica Status Solidi (RRL) – Rapid Research Letters, 6(3), 129–131. https://doi.org/10.1002/pssr.201105596
- . Li, M., Zhou, X., Ding, W., Guo, S., & Wu, N. (2013). Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosensors and Bioelectronics, 41, 889–893. https://doi.org/10.1016/j.bios.2012.09.060
- . Wörner, H. J., Arrell, C. A., Banerji, N., Cannizzo, A., Chergui, M., Das, A. K., Hamm, P., Keller, U., Kraus, P. M., Liberatore, E., Lopez-Tarifa, P., Lucchini, M., Meuwly, M., Milne, C., Moser, J.-E., Rothlisberger, U., Smolentsev, G., Teuscher, J., Van Bokhoven, J. A., & Wenger, O. (2017). Charge migration and charge transfer in molecular systems. Structural Dynamics, 4(6). https://doi.org/10.1063/1.4996505
- . Parini, V. P. (1962). ORGANIC CHARGE-TRANSFER COMPLEXES. Russian Chemical Reviews, 31(7), 408–417. https://doi.org/10.1070/rc1962v031n07abeh001302
- . Bender, C. J. (1986). Theoretical models of charge-transfer complexes. Chemical Society Reviews, 15(4), 475. https://doi.org/10.1039/cs9861500475
- . Sun, M., Pullerits, T., Kjellberg, P., Beenken, W. J. D., & Han, K. (2006). Control of Emission by Intermolecular Fluorescence Resonance Energy Transfer and Intermolecular Charge Transfer. The Journal of Physical Chemistry A, 110(19), 6324–6328. https://doi.org/10.1021/jp060275m
- . Orgel, L. E. (1954). Charge-transfer spectra and some related phenomena. Quarterly Reviews, Chemical Society, 8(4), 422. https://doi.org/10.1039/qr9540800422
- . Hasegawa, T., Mochida, T., Kondo, R., Kagoshima, S., Iwasa, Y., Akutagawa, T., Nakamura, T., & Saito, G. (2000). Mixed-stack organic charge-transfer complexes with intercolumnar networks. Physical Review B, 62(15), 10059–10066. https://doi.org/10.1103/physrevb.62.10059
- . Organic Electronic Memory Devices. (2015). In B. Zhang, Y. Chen, K.-G. Neoh, & E.-T. Kang, Electrical Memory Materials and Devices (pp. 1–53). The Royal Society of Chemistry. https://doi.org/10.1039/9781782622505-00001
- . Mathur, C., Gupta, R., & Bansal, R. K. (2024). Organic Donor‐Acceptor Complexes As Potential Semiconducting Materials. Chemistry – A European Journal, 30(23). https://doi.org/10.1002/chem.202304139
- . Miyan, L., Qamar, S., & Ahmad, A. (2017). Synthesis, characterization and spectrophotometric studies of charge transfer interaction between donor imidazole and π acceptor 2‚4-dinitro-1-naphthol in various polar solvents. Journal of Molecular Liquids, 225, 713–722. https://doi.org/10.1016/j.molliq.2016.10.126
- . Boghaei, D. M., Askarizadeh, E., & Bezaatpour, A. (2008). Synthesis, characterization, spectroscopic and thermodynamic studies of charge transfer interaction of a new water-soluble cobalt(II) Schiff base complex with imidazole derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(2), 624–628. https://doi.org/10.1016/j.saa.2007.05.013
- . Shehab, O. R., & Mansour, A. M. (2013). Charge transfer complexes of 2-arylaminomethyl-1H-benzimidazole with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Experimental and DFT studies. Journal of Molecular Structure, 1047, 121–135. https://doi.org/10.1016/j.molstruc.2013.04.065
- . Job, R. (1964). Advanced physicochemical experiments. Pitman.
- . Stolka, M., Yanus, J. F., & Pearson, J. M. (1976). Polymerization of Vinylanthracene Monomers. 3. 1- and 9-Vinylanthracenes. Macromolecules, 9(5), 715–719. https://doi.org/10.1021/ma60053a006
- . Demirhan, H., Arslan, M., Zengin, M., & Kucukislamoglu, M. (2013). Investigation of Charge Transfer Complexes Formed between Mirtazapine and Someπ-Acceptors. Journal of Spectroscopy, 2013, 1–7. https://doi.org/10.1155/2013/875953
- . Benesi, H. A., & Hildebrand, J. H. (1949). A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. Journal of the American Chemical Society, 71(8), 2703–2707. https://doi.org/10.1021/ja01176a030
- . Suszka, A. (1985). Charge-transfer complexes of imidazole-2-thiones with iodine. Journal of the Chemical Society, Perkin Transactions 2, 4, 531. https://doi.org/10.1039/p29850000531
- . Suszka, A. (1989). Charge-transfer complexes of imidazole-2-thiones and N,N′-dialkylthioureas with sulphur dioxide. J. Chem. Soc., Perkin Trans. 2, 9, 1327–1333. https://doi.org/10.1039/p29890001327
- . Juma, J. M., & Vuai, S. A. (2021). Computational studies of the thermodynamic properties, and global and reactivity descriptors of fluorescein dye derivatives in acetonitrile using density functional theory. Journal of Chemical Research, 45(7–8), 800–805. https://doi.org/10.1177/1747519821994518
- . Solanki, B., Sharma, P., Ranjan, P., Kumar, P., & Chakraborty, T. (2023). A computational study of double perovskites A2BI6 (A = Cs, K, Rb; B = Pt, Sn) invoking density functional theory. Journal of Physical Organic Chemistry, 36(12). https://doi.org/10.1002/poc.4519