Unveiling Hydrothermal Synthesis and Captivating Characteristics of Nickel Nanoferrites
Published 2025-10-13
Keywords
- Nano ferrite,
- Hydrothermal method,
- XRD,
- FTIR,
- SEM
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Nickel nano ferrite was effectively synthesized utilizing the hydrothermal method, followed by a comprehensive analysis of its characteristics. X-ray Diffraction (XRD) analyses established the average crystallite size to be 34.10 nm. The existence of iron oxide and the formation of nano ferrites were confirmed by Fourier Transform Infrared (FTIR) spectroscopy, which displays absorption peaks at 573 cm1 and 481 cm1 in. Scanning Electron Microscopy (SEM) displayed an average particle size of around 80 nm, while Ultraviolet-visible (UV-vis) spectroscopy determined a direct band gap energy of 1.5 eV. These results emphasize the extraordinary nanoscale and optical properties associated with the synthesized nickel nano ferrite, and can be used in the field of storage devices, catalysts for chemical processes & in semiconductor applications.
References
- Mohan AnuN, Manoj B. Synthesis and Characterization of Carbon Nanospheres from Hydrocarbon Soot. International
- Journal of Electrochemical Science. 2012 Oct 1;7(10):9537–49. https://doi.org/10.1016/s1452-3981(23)16217-1
- Mulla R, Rabinal MHK. Copper sulfides: Earth-Abundant and Low-Cost thermoelectric materials. Energy Technology.
- Oct 10;7(7). https://doi.org/10.1002/ente.201800850
- Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C. Synthesis and characterization of
- nickel ferrite magnetic nanoparticles. Materials Research Bulletin. 2011 Sep 22;46(12):2208–11. https://doi.org/10.1016/j.materresbull.2011.09.009
- Naji NE, Aljubouri AA, Ismail RA. Synthesis and characterization of nickel ferrite nanostructures by DC Reactive sputtering technique using new target configuration. Plasmonics. 2024 Jul 23; https://doi.org/10.1007/s11468-024-02439-6
- Sridhar R, Ravinder D, Kumar KV. Synthesis and characterization of copper Substituted nickel Nano-Ferrites
- by Citrate-Gel technique. Advances in Materials Physics and Chemistry. 2012 Jan 1;02(03):192–9.
- https://doi.org/10.4236/ampc.2012.23029
- Nejati K, Zabihi R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method.
- Chemistry Central Journal. 2012 Mar 30;6(1). https://doi.org/10.1186/1752-153x-6-23
- Udhaya PA, Ahmad A, Meena M, Queen MAJ, Aravind M, Velusamy P, et al. Copper Ferrite nanoparticles synthesised
- using a novel green synthesis route: Structural development and photocatalytic activity. Journal of Molecular Structure.
- Dec 17;1277:134807. https://doi.org/10.1016/j.molstruc.2022.134807
- Mulud FH, Dahham NA, Waheed IF. Synthesis and characterization of copper ferrite nanoparticles. IOP Conference Series Materials Science and Engineering. 2020 Nov 1;928(7):072125. https://doi.org/10.1088/1757- 899x/928/7/072125
- Mazurenko J, Sijo AK, Kaykan L, Kotsyubynsky V, Gondek Ł, Zywczak A, et al. Synthesis and characterization of copper
- ferrite nanoparticles for efficient photocatalytic degradation of organic dyes. Journal of Nanotechnology. 2025 Jan
- ;2025(1). https://doi.org/10.1155/jnt/8899491
- Özçelik S. Copper ferrite nanoparticles: structural, magnetic, optical, photocatalytic activity and blood compatibility
- properties. BioNanoScience. 2023 May 19;13(3):958–72. https://doi.org/10.1007/s12668-023-01130-0
- Yadav RS, Kuřitka I, Vilcakova J, Havlica J, Masilko J, Kalina L, et al. Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. Journal of Materials Science Materials in Electronics. 2017 Feb 9;28(8):6245–61.https://doi.org/10.1007/s10854-016- 6305-4
- Kumar D, Verma R, Chauhan A, Thakur P, Wan F, Thakur A. Sustainable high frequency applications of copper ferrite
- nanoparticles. Inorganic Chemistry Communications. 2025 Jan1;114018. https://doi.org/10.1016/j.inoche.2025.114018
- Hegazy EZ, El-Maksod IHA, Ibrahim AM, El-Shafay SES. New insights about the formation of copper ferrite: in situ X-ray
- diffraction study. Bulletin of the National Research Centre/Bulletin of the National Research Center. 2018 Oct 10;42(1). https://doi.org/10.1186/s42269-018-0010-9
- Haque MdM, Rahman A, Shahin MdSI, Habib MdA, Khan MdAR, Mahiuddin Md, et al. Manganese doped copper ferrite
- nanoparticles: A promising approach for organic dye elimination under light irradiation. Results in Chemistry.
- Jan 1;7:101509. https://doi.org/10.1016/j.rechem.2024.101509
- Surashe VK, Mahale V, Keche AP, Alange RC, Aghav PS, Dorik RG. Structural and electrical properties of copper ferrite
- (CuFe2O4) NPs. Journal of Physics Conference Series. 2020 Oct 1;1644(1):012025. https://doi.org/10.1088/1742-
- /1644/1/012025
- Faramawy AM, El-Sayed HM. Enhancement of magnetization and optical properties of CuFe2O4/ZnFe2O4 core/shell
- nanostructure. Scientific Reports. 2024 Mar 23;14(1). https://doi.org/10.1038/s41598-024-57134-7
- Kannolli A, Avinash P. Physicochemical investigation of synthesized bismuth and Silver-Doped bismuth nanoferrites,
- and their dielectric properties. IOP Conference Series Materials Science and Engineering. 2024 Apr
- ;1300(1):012038.https://doi.org/10.1088/1757- 899x/1300/1/012038
- Kannolli A, Avinash P, Shettar AK, Hoskeri JH, G KM. A pilot study: Changes of MDAMB-231 cancer cell line response to
- synthesized oleic acid – coated MgFe2O4 nano ferrite compound and its cytotoxic effects on L929 cell line.
- Chemical Physics Impact. 2023 Nov 24;7:100396. https://doi.org/10.1016/j.chphi.2023.100396
- Kannolli A, Avinash P, H B. An investigation of the dielectric behavior of Bi0.7La0.3FeO3 compound under the influence
- of different calcination temperatures. Chemical Physics Impact. 2023 Oct 9;7:100336. https://doi.org/10.1016/j.chphi.2023.100336n
- Kannolli A, Avinash P, Manohara SR, Taj M, MG K. In-depth study of zinc nanoferrite particles at different calcination
- temperatures and their behavior in the presence of electric and magnetic fields. Journal of Magnetism and Magnetic
- Materials. 2023 Jul 26;584:171079. https://doi.org/10.1016/j.jmmm.2023.171079
- Dave PN, Thakkar R, Sirach R, Chaturvedi S. Effect of copper ferrite (CuFe2O4) in the thermal decomposition of modified
- nitrotriazolone. Materials Advances. 2022 Jan 1;3(12):5019–26. https://doi.org/10.1039/d2ma00250g
- Devsharma SC, Rahman MdL, Hossain MdJ, Biswas B, Ahmed MdF, Sharmin N. Elucidation of structural, electromagnetic, and optical properties of Cu–Mg ferrite nanoparticles. Heliyon. 2024 Jun 25;10(13):e33578.
- https://doi.org/10.1016/j.heliyon.2024.e33578n
- Kiey S a. A, Ramadan R, El-Masry MM. Synthesis and characterization of mixed ternary transition metal ferrite
- nanoparticles comprising cobalt, copper and binary cobalt– copper for high-performance supercapacitor applications.
- Applied Physics A. 2022 May 9;128(6).https://doi.org/10.1007/s00339-022-05590-1
- Mazurenko J, K SA, Kaykan L, Michalik JM, Gondek Ł, Szostak E, et al. Magneto-Structural properties of MG-Substituted
- copper ferrite nanoparticles. Materials Research Express. 2024 Dec 1;11(12):125003. https://doi.org/10.1088/2053-
- /ad9c19
- Noreen S, Hussain A. Structural, optical, morphological and magnetic properties of Cu0.25M0.75Fe2O4 (M=Mn, Mg, Ni
- and co) ferrites for optoelectronic applications. Optical Materials [Internet]. 2023 Apr 24;139:113797
- https://doi.org/10.1016/j.optmat.2023.113797