Vol. 24 No. 3 (2025): Mapana Journal of Sciences
Research Articles

Unveiling Hydrothermal Synthesis and Captivating Characteristics of Nickel Nanoferrites

Amrutesh Kannolli
Rai Technology University, Bengaluru, Karnatatka, India
Avinash P
Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka, India
Bio
Suvidha P Hegde
Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka, India

Published 2025-10-13

Keywords

  • Nano ferrite,
  • Hydrothermal method,
  • XRD,
  • FTIR,
  • SEM

Abstract

Nickel nano ferrite was effectively synthesized utilizing the hydrothermal method, followed by a comprehensive analysis of its characteristics. X-ray Diffraction (XRD) analyses established the average crystallite size to be 34.10 nm. The existence of iron oxide and the formation of nano ferrites were confirmed by Fourier Transform Infrared (FTIR) spectroscopy, which displays absorption peaks at 573 cm1 and 481 cm1 in. Scanning Electron Microscopy (SEM) displayed an average particle size of around 80 nm, while Ultraviolet-visible (UV-vis) spectroscopy determined a direct band gap energy of 1.5 eV. These results emphasize the extraordinary nanoscale and optical properties associated with the synthesized nickel nano ferrite, and can be used in the field of storage devices, catalysts for chemical processes & in semiconductor applications.

References

  1. Mohan AnuN, Manoj B. Synthesis and Characterization of Carbon Nanospheres from Hydrocarbon Soot. International
  2. Journal of Electrochemical Science. 2012 Oct 1;7(10):9537–49. https://doi.org/10.1016/s1452-3981(23)16217-1
  3. Mulla R, Rabinal MHK. Copper sulfides: Earth-Abundant and Low-Cost thermoelectric materials. Energy Technology.
  4. Oct 10;7(7). https://doi.org/10.1002/ente.201800850
  5. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C. Synthesis and characterization of
  6. nickel ferrite magnetic nanoparticles. Materials Research Bulletin. 2011 Sep 22;46(12):2208–11. https://doi.org/10.1016/j.materresbull.2011.09.009
  7. Naji NE, Aljubouri AA, Ismail RA. Synthesis and characterization of nickel ferrite nanostructures by DC Reactive sputtering technique using new target configuration. Plasmonics. 2024 Jul 23; https://doi.org/10.1007/s11468-024-02439-6
  8. Sridhar R, Ravinder D, Kumar KV. Synthesis and characterization of copper Substituted nickel Nano-Ferrites
  9. by Citrate-Gel technique. Advances in Materials Physics and Chemistry. 2012 Jan 1;02(03):192–9.
  10. https://doi.org/10.4236/ampc.2012.23029
  11. Nejati K, Zabihi R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method.
  12. Chemistry Central Journal. 2012 Mar 30;6(1). https://doi.org/10.1186/1752-153x-6-23
  13. Udhaya PA, Ahmad A, Meena M, Queen MAJ, Aravind M, Velusamy P, et al. Copper Ferrite nanoparticles synthesised
  14. using a novel green synthesis route: Structural development and photocatalytic activity. Journal of Molecular Structure.
  15. Dec 17;1277:134807. https://doi.org/10.1016/j.molstruc.2022.134807
  16. Mulud FH, Dahham NA, Waheed IF. Synthesis and characterization of copper ferrite nanoparticles. IOP Conference Series Materials Science and Engineering. 2020 Nov 1;928(7):072125. https://doi.org/10.1088/1757- 899x/928/7/072125
  17. Mazurenko J, Sijo AK, Kaykan L, Kotsyubynsky V, Gondek Ł, Zywczak A, et al. Synthesis and characterization of copper
  18. ferrite nanoparticles for efficient photocatalytic degradation of organic dyes. Journal of Nanotechnology. 2025 Jan
  19. ;2025(1). https://doi.org/10.1155/jnt/8899491
  20. Özçelik S. Copper ferrite nanoparticles: structural, magnetic, optical, photocatalytic activity and blood compatibility
  21. properties. BioNanoScience. 2023 May 19;13(3):958–72. https://doi.org/10.1007/s12668-023-01130-0
  22. Yadav RS, Kuřitka I, Vilcakova J, Havlica J, Masilko J, Kalina L, et al. Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. Journal of Materials Science Materials in Electronics. 2017 Feb 9;28(8):6245–61.https://doi.org/10.1007/s10854-016- 6305-4
  23. Kumar D, Verma R, Chauhan A, Thakur P, Wan F, Thakur A. Sustainable high frequency applications of copper ferrite
  24. nanoparticles. Inorganic Chemistry Communications. 2025 Jan1;114018. https://doi.org/10.1016/j.inoche.2025.114018
  25. Hegazy EZ, El-Maksod IHA, Ibrahim AM, El-Shafay SES. New insights about the formation of copper ferrite: in situ X-ray
  26. diffraction study. Bulletin of the National Research Centre/Bulletin of the National Research Center. 2018 Oct 10;42(1). https://doi.org/10.1186/s42269-018-0010-9
  27. Haque MdM, Rahman A, Shahin MdSI, Habib MdA, Khan MdAR, Mahiuddin Md, et al. Manganese doped copper ferrite
  28. nanoparticles: A promising approach for organic dye elimination under light irradiation. Results in Chemistry.
  29. Jan 1;7:101509. https://doi.org/10.1016/j.rechem.2024.101509
  30. Surashe VK, Mahale V, Keche AP, Alange RC, Aghav PS, Dorik RG. Structural and electrical properties of copper ferrite
  31. (CuFe2O4) NPs. Journal of Physics Conference Series. 2020 Oct 1;1644(1):012025. https://doi.org/10.1088/1742-
  32. /1644/1/012025
  33. Faramawy AM, El-Sayed HM. Enhancement of magnetization and optical properties of CuFe2O4/ZnFe2O4 core/shell
  34. nanostructure. Scientific Reports. 2024 Mar 23;14(1). https://doi.org/10.1038/s41598-024-57134-7
  35. Kannolli A, Avinash P. Physicochemical investigation of synthesized bismuth and Silver-Doped bismuth nanoferrites,
  36. and their dielectric properties. IOP Conference Series Materials Science and Engineering. 2024 Apr
  37. ;1300(1):012038.https://doi.org/10.1088/1757- 899x/1300/1/012038
  38. Kannolli A, Avinash P, Shettar AK, Hoskeri JH, G KM. A pilot study: Changes of MDAMB-231 cancer cell line response to
  39. synthesized oleic acid – coated MgFe2O4 nano ferrite compound and its cytotoxic effects on L929 cell line.
  40. Chemical Physics Impact. 2023 Nov 24;7:100396. https://doi.org/10.1016/j.chphi.2023.100396
  41. Kannolli A, Avinash P, H B. An investigation of the dielectric behavior of Bi0.7La0.3FeO3 compound under the influence
  42. of different calcination temperatures. Chemical Physics Impact. 2023 Oct 9;7:100336. https://doi.org/10.1016/j.chphi.2023.100336n
  43. Kannolli A, Avinash P, Manohara SR, Taj M, MG K. In-depth study of zinc nanoferrite particles at different calcination
  44. temperatures and their behavior in the presence of electric and magnetic fields. Journal of Magnetism and Magnetic
  45. Materials. 2023 Jul 26;584:171079. https://doi.org/10.1016/j.jmmm.2023.171079
  46. Dave PN, Thakkar R, Sirach R, Chaturvedi S. Effect of copper ferrite (CuFe2O4) in the thermal decomposition of modified
  47. nitrotriazolone. Materials Advances. 2022 Jan 1;3(12):5019–26. https://doi.org/10.1039/d2ma00250g
  48. Devsharma SC, Rahman MdL, Hossain MdJ, Biswas B, Ahmed MdF, Sharmin N. Elucidation of structural, electromagnetic, and optical properties of Cu–Mg ferrite nanoparticles. Heliyon. 2024 Jun 25;10(13):e33578.
  49. https://doi.org/10.1016/j.heliyon.2024.e33578n
  50. Kiey S a. A, Ramadan R, El-Masry MM. Synthesis and characterization of mixed ternary transition metal ferrite
  51. nanoparticles comprising cobalt, copper and binary cobalt– copper for high-performance supercapacitor applications.
  52. Applied Physics A. 2022 May 9;128(6).https://doi.org/10.1007/s00339-022-05590-1
  53. Mazurenko J, K SA, Kaykan L, Michalik JM, Gondek Ł, Szostak E, et al. Magneto-Structural properties of MG-Substituted
  54. copper ferrite nanoparticles. Materials Research Express. 2024 Dec 1;11(12):125003. https://doi.org/10.1088/2053-
  55. /ad9c19
  56. Noreen S, Hussain A. Structural, optical, morphological and magnetic properties of Cu0.25M0.75Fe2O4 (M=Mn, Mg, Ni
  57. and co) ferrites for optoelectronic applications. Optical Materials [Internet]. 2023 Apr 24;139:113797
  58. https://doi.org/10.1016/j.optmat.2023.113797