Theoretical and Experimental Investigations of antibiotic agents Sulfamethoxazole (SMX) and Trimethoprim (TMP) by Density Functional Theory


  • Thipperudrappa Javuku Dept. of Physics BNM Institute of Physics BSK 2nd Stage, Bangalore-70
  • Annoji Reddy R
  • Vibha
  • Prachalith N.C.
  • Ravikantha M.N.
  • Shilpa K.G.


Sulfamethoxazole, Trimethoprim, DFT, VEDA, FMO, NLO


In this manuscript, a complete theoretical and experimental investigation of antibiotic agents Sulfamethoxazole (SMX) and Trimethoprim (TMP) was performed using the Density Functional Theory (DFT) with B3LYP, CAM-B3LTP and B3PW91 levels of theory and 6-311++G(d,p) basis set. The geometrical parameters of SMX and TMP are computed and compared with literature data.  The global reactivity descriptors are estimated from HOMO - LUMO energies to know the chemical reactivity and stability of titled molecules. The MEP study has been used to identify the better electrophilic sites in titled molecules. Mulliken charge analysis has been carried out at the different levels of theories. The NLO parameters are computed for both molecules to check their suitability for NLO applications. The NBO analysis has been used to disclose the most possible intensive intermolecular interactions. The assignment of vibrational spectra of titled molecules has been carried out using assistance of DFT coupled with the VEDA program.   


A. Ovung and J. Bhattacharyya, “Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions,” Biophysical Reviews, vol. 13, no. 2. Springer, pp. 259–272, Mar. 2021. doi: 10.1007/s12551-021-00795-9.

S. P. Vijayachamundeshwari, E. J. J. Samuel, and N. Sundaraganesan, “Molecular structure , vibrational spectra , NMR and UV spectral analysis of,” Spectrochim. ACTA PART A Mol. Biomol. Spectrosc., 2013, doi: 10.1016/j.saa.2013.07.063.

D. Das et al., “Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy The crystal structure of sulfamethoxazole , interaction with DNA , DFT calculation , and molecular docking studies,” Spectrochim. ACTA PART A Mol. Biomol. Spectrosc., vol. 137, pp. 560–568, 2015, doi: 10.1016/j.saa.2014.08.034.

M. C. Almandoz, M. I. Sancho, and S. E. Blanco, “Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures,” Spectrochim. ACTA PART A Mol. Biomol. Spectrosc., vol. 118, pp. 112–119, 2014, doi: 10.1016/j.saa.2013.08.060.

A. Ungurean, N. Leopold, L. David, and V. Chis, “Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Vibrational spectroscopic and DFT study of trimethoprim,” vol. 102, pp. 52–58, 2013, doi: 10.1016/j.saa.2012.10.026.

T. Van Mourik, M. Bühl, and M. P. Gaigeot, “Density functional theory across chemistry, physics and biology,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 372, no. 2011, 2014, doi: 10.1098/rsta.2012.0488.

M. Takasuka and H. Nakai, “IR and Raman spectral and X-ray structural studies of polymorphic forms of sulfamethoxazole,” Vib. Spectrosc., vol. 25, no. 2, pp. 197–204, 2001, doi: 10.1016/S0924-2031(01)00089-3.

L. A. J. Rodríguez-Blanco, R. Ocampo-Pérez, C. F. A. Gómez-Durán, J. P. Mojica-Sánchez, and R. S. Razo-Hernández, “Removal of sulfamethoxazole, sulfadiazine, and sulfamethazine by UV radiation and HO• and SO4•− radicals using a response surface model and DFT calculations,” Environ. Sci. Pollut. Res., vol. 27, no. 33, pp. 41609–41622, Nov. 2020, doi: 10.1007/S11356-020-10071-0.

K. R. Genik Ea, Biryukova Mm, Zolotareva Nv, Kemelbaeva Dr, “Structure, Vibration Frequencies And Thermodynamic Properties of Trimethoprim: The Quantumchemical Studies,",” p. P 308, 2016.

N. A. Khudhair, M. M. Kadhim, and A. A. Khadom, “Effect of Trimethoprim Drug Dose on Corrosion Behavior of Stainless Steel in Simulated Human Body Environment: Experimental and Theoretical Investigations,” J. Bio- Tribo-Corrosion, vol. 7, no. 3, pp. 1–15, 2021, doi: 10.1007/s40735-021-00559-8.

FilizÖztürk, “Structural characterization (XRD, FTIR) and magnetic studies of Cd(II)-Sulfamethoxazole-2,2′-bipyridine: DFT and Hirshfeld Surface Analysis,”,” J. Mol. Struct., vol. 1271.

M. Z. Ahmed and U. Habib, “DFT studies of temperature effect on coordination chemistry of Cu(II)-trimethoprim complexes,” J. Coord. Chem., vol. 71, no. 8, pp. 1102–1113, 2018, doi: 10.1080/00958972.2018.1447667.

K. D. K. R. Biryukova Mm , Genik Ea , Zolotareva Nv, “The Quantumchemical Studies Of Structure And Properties Of Sulfamethoxazole In Composition Of The Drug ‘Biseptol,” p. 92, 2016.

R. D. Denningham II, T. A. Keith, and J. Millan, “Gauss View, Version 4.1.2,” Semichem Inc, Shawnee Mission KS, 2003.

J. R. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. damo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. chterski R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox “Gaussian 09, Revision B.01,” Gaussian, Inc.2010.

P. V. R. S. Timothy Clark, Jayaraman Chandrasekhar, Günther W. Spitznagel, “Efficient diffuse function-augmented basis sets for anion calculations. III.† The 3-21+G basis set for first-row elements, Li–F,” 1983.

M. H. Jamróz, “Vibrational energy distribution analysis (VEDA): Scopes and limitations,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 114, pp. 220–230, 2013, doi: 10.1016/J.SAA.2013.05.096.

E. D. Glendening, C. R. Landis, and F. Weinhold, “NBO 6.0: Natural bond orbital analysis program,” J. Comput. Chem., vol. 34, no. 16, pp. 1429–1437, 2013, doi: 10.1002/jcc.23266.

L. Maury, J. Rambaud, B. Pauvert, Y. Lasserre, G. Berge, and M. Audran, “Étude Physico-Chimique, Spectres De Vibration Et Structure Du Sulfaméthoxazole,” Can. J. Chem., vol. 63, no. 11, pp. 3012–3018, 1985, doi: 10.1139/v85-500.

T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chem. Phys. Lett., vol. 393, no. 1–3, pp. 51–57, 2004, doi: 10.1016/j.cplett.2004.06.011.

J. Prashanth, G. Ramesh, J. L. Naik, J. Kishan, and B. V. Reddy, “ScienceDirect Molecular geometry , NBO analysis , Hyperpolarizability and HOMO-LUMO energies of 2-azido-1-phenylethanone using Quantum chemical calculations,” Mater. Today Proc., vol. 3, no. 10, pp. 3761–3769, 2016, doi: 10.1016/j.matpr.2016.11.025.

L. G. Zhuo, W. Liao, and Z. X. Yu, “A Frontier Molecular Orbital Theory Approach to Understanding the Mayr Equation and to Quantifying Nucleophilicity and Electrophilicity by Using HOMO and LUMO Energies,” Asian J. Org. Chem., vol. 1, no. 4, pp. 336–345, 2012, doi: 10.1002/ajoc.201200103.

A. Chandran et al., “Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy FT-IR , FT-Raman and computational study of ( E ) - N -carbamimidoyl-4- (( 4-methoxybenzylidene ) amino ) benzenesulfonamide,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 92, pp. 84–90, 2012, doi: 10.1016/j.saa.2012.02.030.

J. Fang and J. Li, “Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides,” vol. 593, pp. 179–185, 2002.

E. S. Marinho and M. M. Marinho, “A DFT study of synthetic drug topiroxostat: MEP, HOMO, LUMO,” vol. 7, no. 8, pp. 1264–1270, 2016.

E. B. Masoome Sheikhia,* and and H. Laric, “Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N -( 2 -benzoyl-phenyl) oxalyl: A DFT study Masoome Sheikhi,” J. Phys. Theor. Chem., vol. 13, 2016.

S. S. Khemalapure, S. M. Hiremath, C. S. Hiremath, V. S. Katti, and M. M. Basanagouda, “Investigations of structural, vibrational and electronic properties on 5-(6-methyl-benzofuran-3-ylmethyl)-3H-[1,3,4]oxadiazole-2-thione: Experimental and computational approach,” Chem. Data Collect., vol. 28, 2020, doi: 10.1016/j.cdc.2020.100410.

E. A. Bisong et al., “Heliyon Vibrational , electronic , spectroscopic properties , and NBO analysis of xylene : DFT study,” Heliyon, vol. 6, no. December, p. e05783, 2020, doi: 10.1016/j.heliyon.2020.e05783.

M. Kurt, P. C. Babu, N. Sundaraganesan, M. Cinar, and M. Karabacak, “Molecular structure, vibrational, UV and NBO analysis of 4-chloro-7-nitrobenzofurazan by DFT calculations,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 79, no. 5, pp. 1162–1170, 2011, doi: 10.1016/j.saa.2011.04.037.

F. W. Asker and Z. Z. Mahamad, “Synthesis and characterization of some sulfonamide dervatives,” vol. 13, no. 2, pp. 169–177, 2017.

D. Ramarajan, K. Tamilarasan, and S. Sudha, “Synthesis , crystal structure analysis and DFT studies of,” J. Mol. Struct., vol. 1139, pp. 282–293, 2017, doi: 10.1016/j.molstruc.2017.03.045.

S. P. Vijayachamundeeswari and H. Umamahesvari, “Quantum Chemical and spectroscopic ( FT-IR , FT Raman , NMR and UV ) analysis of Antibiotic drug Sulfachloropyridazine,” no. 4, 2019.

E. Başar, E. Tunca, M. Bülbül, M. Kaya, and E. Ba, “Synthesis of novel sulfonamides under mild conditions with effective inhibitory activity against the carbonic anhydrase isoforms I and II Synthesis of novel sulfonamides under mild conditions with effective inhibitory activity against the carbonic anhydra,” vol. 6366, 2016, doi: 10.3109/14756366.2015.1134524.

I. Gulaczyk et al., “The NH 2 scissors band of methylamine To cite this version : HAL Id : hal-02344590,” 2019.

N. G. P. Roeges, “Roeges N.G.P., A Guide to the Complete Interpretation of the Infrared Spectra of Organic Structures. Wiley, NY, 1994.,” 1994.

P. Govindasamy and S. Gunasekaran, “Quantum mechanical calculations and spectroscopic ( FT-IR , FT-Raman and UV ) investigations , molecular orbital , NLO , NBO , NLMO and MESP,” J. Mol. Struct., vol. 1081, pp. 96–109, 2015, doi: 10.1016/j.molstruc.2014.10.011.

J. Prashanth, G. Ramesh, J. L. Naik, J. K. Ojha, B. V. Reddy, and G. R. Rao, “Molecular Structure, Vibrational Analysis and First Order Hyperpolarizability of 4-Methyl-3-Nitrobenzoic Acid Using Density Functional Theory,” Opt. Photonics J., vol. 05, no. 03, pp. 91–107, 2015, doi: 10.4236/opj.2015.53008.

M. K. Subramanian, P. M. Anbarasan, and S. Manimegalai, “Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy DFT simulations and vibrational analysis of FT-IR and FT-Raman spectra of,” vol. 73, pp. 642–649, 2009, doi: 10.1016/j.saa.2009.03.006.

T. Chithambarathanu, K. Vanaja, and J. Daisymagdaline, “Quantum Chemical Calculations on Vibrational and Electronic Structure Of3- ( 4-Methoxybenzoyl ) Prop ionic Acid,” vol. 11, no. 3, pp. 42–53, 2018, doi: 10.9790/5736-1103014253.