A Comprehensive Investigation of Solvatochromism and Solvation in Medicinally Significant Sulfa Drugs: Estimation of Excited State Dipole Moments

Authors

  • Vibha K Vijayanagara Sri Krishnadevaraya University, Ballari
  • Prachalith N.C. Vijayanagara Sri Krishnadevaraya University, Ballari
  • Suresh Kumar H.M. Siddaganga Institute of technology, Tumakuru.
  • Ravikantha M.N. Vijayanagara Sri Krishnadevaraya University, Ballari
  • Annoji Reddy R Vijayanagara Sri Krishnadevaraya University, Ballari.
  • Thipperudrappa Javuku Department of Physics, Vijayanagara Sri Krishnadevaraya University, Ballari- 583 104, India.

Keywords:

Dipole moment, Polarizability, Preferential solvation, Solvatochromic, Sulfa drugs

Abstract

The solvatochromic properties of important sulfa drug molecules sulfadiazine (SDZ), sulfamerazine (SMZ) and sulfamethazine (STZ) were investigated in solvents of different polarities, including their solvation in a binary THF-Water solvent mixture. Steady-state absorption and fluorescence methods were utilized to analyse the absorption and fluorescence spectra of these compounds, which reveals the significant spectral shifts corresponding to changes in solvent polarity. Further insights on the solvatochromic characteristics of the examined drug molecules were obtained using Lippert-Mataga, Reichardt’s, Kamlet-Taft, and Catalan’s solvent polarity approaches. The study also identified synergistic effects in the THF-Water solvent mixture. Different solvatochromic techniques were employed to calculate the excited-state dipole moment of the studied molecules. The Bilot-Kawaski approach was utilized to investigate the influence of solute polarizability on the excited state dipole moment and the change in dipole moment. Top of Form

Author Biographies

Vibha K, Vijayanagara Sri Krishnadevaraya University, Ballari

Research scholar, Department of physics, Vijayanagara Sri Krishnadevaraya University, Ballari.

Prachalith N.C., Vijayanagara Sri Krishnadevaraya University, Ballari

Research scholar, department of Physics, Vijayanagara Sri Krishnadevara University, Ballari. 

Suresh Kumar H.M., Siddaganga Institute of technology, Tumakuru.

Professor and Head of the department, Department of Physics, SIT, Tumakuru.

Ravikantha M.N., Vijayanagara Sri Krishnadevaraya University, Ballari

Research Scholar, Department of Physics, Vijayanagara Sri Krishnadevaraya University, Ballari.

Annoji Reddy R, Vijayanagara Sri Krishnadevaraya University, Ballari.

Research Scholar, Department of physics, Vijayanagara Sri Krishnadevaraya University, Ballari.

References

Monnais, L. (2009). From Colonial Medicines to Global Pharmaceuticals? The Introduction of Sulfa Drugs in French Vietnam. East Asian Science, Technology and Society: An International Journal, 3, 257-285. doi:10.1007/s12280-009-9083-8.

Ovung, A., & Bhattacharyya, J. (2021). Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophysical reviews, 13(2), 259-272. doi: 10.1007/s12551-021-00795-9.

Ghorab, M. M., M. Soliman, A., El-Sayyad, G. S., Abdel-Kader, M. S., & El-Batal, A. I. (2023). Synthesis, Antimicrobial, and Antibiofilm Activities of Some Novel 7-Methoxyquinoline Derivatives Bearing Sulfonamide Moiety against Urinary Tract Infection-Causing Pathogenic Microbes. International Journal of Molecular Sciences, 24(10), 8933. doi: 10.3390/ijms24108933.

Pryles, C. V. (1970). The Use of Sulfonamides in Urinary Tract Infection. Medical Clinics of North America, 54(5), 1077-1080. doi: 10.1016/s0025-7125(16)32578-0.

Baran, W., Adamek, E., Ziemiańska, J., & Sobczak, A. (2011). Effects of the presence of sulfonamides in the environment and their influence on human health. Journal of hazardous materials, 196, 1-15. doi: 10.1016/j.jhazmat.2011.08.082.

Ali, H., & Goswami, D. (2023). Demonstration of solute-specific synergism in binary solvents. Journal of Fluorescence, 1-11. doi: 10.1007/s10895-022-03141-8.

Awaisheh, S. S., Khalifeh, M. S., Rahahleh, R. J., Ja’far, M., & Algroom, R. M. (2019). Sulfamethazine contamination level and exposure assessment in domestic and imported poultry meats in Jordan. Veterinary World, 12(12), 1992. doi: 10.14202/vetworld.2019.1992-1997.

Venning, D. R., Mousa, J. J., Lukasiewicz, R. J., & Winefordner, J. D. (1972). Influence of solvent upon the phosphorescence characteristics of several sulfonamides at 77. deg. K. Analytical Chemistry, 44(14), 2387-2389. doi: 10.1021/ac60322a044.

Sterling, J. M., & Haney, W. G. (1974). Spectrophotofluorometric analysis of procainamide and sulfadiazine in presence of primary aliphatic amines based on reaction with fluorescamine. Journal of Pharmaceutical Sciences, 63(9), 1448-1450. doi: 10.1002/jps.2600630925.

Pang, G. F., Cao, Y. Z., Fan, C. L., Zhang, J. J., Li, X. M., Li, Z. Y., & Jia, G. Q. (2003). Liquid chromatography–fluorescence detection for simultaneous analysis of sulfonamide residues in honey. Analytical and bioanalytical chemistry, 376(4), 534-541. doi: 10.1007/s00216-003-1883-4

Bitas, D., Kabir, A., Locatelli, M., & Samanidou, V. (2018). Food sample preparation for the determination of sulfonamides by high-performance liquid chromatography: State-of-the-art. Separations, 5(2), 31.

Naresh, K. (2014). Applications of fluorescence spectroscopy. J. Chem. Pharm. Sci, 974, 2115.

Shahzad, A., Köhler, G., Knapp, M., Gaubitzer, E., Puchinger, M., & Edetsberger, M. (2009). Emerging applications of fluorescence spectroscopy in medical microbiology field. Journal of Translational Medicine, 7, 1-6. doi: 10.1186/1479-5876-7-99.

Bose, A., Thomas, I., & Abraham, E. (2018). Fluorescence spectroscopy and its applications: A Review. Int. J. Adv. Pharm. Res, 8(1), 1-8. doi: 10.7439/ijapa

Andersen, C. M., & Mortensen, G. (2008). Fluorescence spectroscopy: A rapid tool for analyzing dairy products. Journal of agricultural and food chemistry, 56(3), 720-729. doi: https://doi.org/10.1021/jf072025o.

Shkoor, M., Mehanna, H., Shabana, A., Farhat, T., & Bani-Yaseen, A. D. (2020). Experimental and DFT/TD-DFT computational investigations of the solvent effect on the spectral properties of nitro substituted pyridino [3, 4-c] coumarins. Journal of Molecular Liquids, 313, 113509. doi: 10.1016/j.molliq.2020.113509.

Raghavendra, U. P., Basanagouda, M., Melavanki, R. M., Fattepur, R. H., & Thipperudrappa, J. (2015). Solvatochromic studies of biologically active iodinated 4-aryloxymethyl coumarins and estimation of dipole moments. Journal of Molecular Liquids, 202, 9-16. doi: 10.1016/j.molliq.2014.12.003.

Husain, S., Pandey, N., Fatma, N., Pant, S., & Mehata, M. S. (2022). Spectral characteristics of 3, 5-diaminobenzoic acid in pure and mixed solvents: Experimental and theoretical study. Journal of Molecular Liquids, 368, 120783. doi: 10.1016/j.molliq.2022.120783.

Deepa, H. R., Thipperudrappa, J., Fattepur, R. H., & Kumar, H. S. (2013). Solvatochromic shift studies in LD-425 and LD-423: Estimation of ground and excited state dipole moments. Journal of Molecular Liquids, 181, 82-88. doi: 10.1016/j.molliq.2013.02.016.

Patil, M. K., Kotresh, M. G., Tilakraj, T. S., & Inamdar, S. R. (2022). Solvatochromism and ZINDO-IEFPCM solvation study on NHS ester activated AF514 and AF532 dyes: Evaluation of the dipole moments. European Journal of Chemistry, 13(1), 8-19. doi: 10.5155/eurjchem.13.1.8-19.2123.

Melavanki, R., Sharma, K., Muttannavar, V. T., Kusanur, R., Katagi, K., Patra, S. M., ... & Koppal, V. V. (2021). Quantum chemical computations, fluorescence spectral features and molecular docking of two biologically active heterocyclic class of compounds. Journal of Photochemistry and Photobiology A: Chemistry, 404, 112956.doi: 10.1016/j.jphotochem.2020.112956.

Patil, M. K., Kotresh, M. G., & Inamdar, S. R. (2019). A combined solvatochromic shift and TDDFT study probing solute-solvent interactions of blue fluorescent Alexa Fluor 350 dye: Evaluation of ground and excited state dipole moments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 215, 142-152. doi: 10.1016/j.saa.2019.02.022.

Matiadis, D., Nowak, K. E., Alexandratou, E., Hatzidimitriou, A., Sagnou, M., & Papadakis, R. (2021). Synthesis and (fluoro) solvatochromism of two 3-styryl-2-pyrazoline derivatives bearing benzoic acid moiety: A spectral, crystallographic and computational study. Journal of Molecular Liquids, 331, 115737. doi: 10.1016/j.molliq.2021.115737.

Lokshin, V., Sigalov, M., Larina, N., & Khodorkovsky, V. (2021). Dipole moments of conjugated donor–acceptor substituted systems: calculations vs. experiments. RSC advances, 11(2), 934-945. doi: 10.1039/d0ra10182f.

Homocianu, M., & Airinei, A. (2015). Investigations of absorption and emission spectral data in mixed liquid media. A short review of recent literature. Journal of Molecular Liquids, 209, 549-556. doi: 10.1016/j.molliq.2015.06.042.

Castro, G. T., Filippa, M. A., Peralta, C. M., Davin, M. V., Almandoz, M. C., & Gasull, E. I. (2018). Solubility and preferential solvation of piroxicam in neat solvents and binary systems. Zeitschrift für Physikalische Chemie, 232(2), 257-280.doi: 10.1515/zpch-2017-0946.

Bhagwat, A. A., & Sekar, N. (2019). Fluorescent 7-substituted coumarin dyes: solvatochromism and NLO studies. Journal of Fluorescence, 29, 121-135. doi: 10.1007/s10895-018-2316-2.

Mohan, M., Pangannaya, S., Satyanarayan, M. N., & Trivedi, D. R. (2018). Photophysical and electrochemical properties of organic molecules: Solvatochromic effect and DFT studies. Optical Materials, 77, 211-220.doi: 10.1016/j.optmat.2018.01.031.

Mataga, N., Kaifu, Y., & Koizumi, M. (1956). Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bulletin of the Chemical Society of Japan, 29(4), 465-470. doi: 10.1246/bcsj.29.465.

Govindasamy, P., & Gunasekaran, S. (2015). Quantum mechanical calculations and spectroscopic (FT-IR, FT-Raman and UV) investigations, molecular orbital, NLO, NBO, NLMO and MESP analysis of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzene-1-sulfonamide. Journal of Molecular Structure, 1081, 96-109. doi: 10.1016/j.molstruc.2014.10.011.

Bilot, L., & Kawski, A. (1963). Der Einfluß des Lösungsmittels auf die Elektronenspektren lumineszierender Moleküle. Zeitschrift für Naturforschung A, 18(1), 10-15. doi: 10.1515/zna-1963-0103.

Subramanian, M. K., Anbarasan, P. M., & Manimegalai, S. (2009). DFT simulations and vibrational analysis of FT-IR and FT-Raman spectra of 2, 4-diamino-6-hydroxypyrimidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(4), 642-649. doi: 10.1016/j.saa.2009.03.006.

Kawski, A. (2002). On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Zeitschrift für Naturforschung A, 57(5), 255-262. doi: 10.1515/zna-2002-0509.

Kawski, A., Kukliński, B., & Bojarski, P. (2006). Excited state dipole moments of N, N-dimethylaniline from thermochromic effect on electronic absorption and fluorescence spectra. Chemical physics, 320(2-3), 188-192. doi: 10.1016/j.chemphys.2005.07.007.

Reichardt, C. (1994). Solvatochromic dyes as solvent polarity indicators. Chemical reviews, 94(8), 2319-2358. doi: 10.1021/cr00032a005.

Taft, R. W., Abboud, J. L. M., & Kamlet, M. J. (1984). Linear solvation energy relationships. 28. An analysis of Swain's solvent" acity" and" basity" scales. The Journal of Organic Chemistry, 49(11), 2001-2005. doi: 10.1021/jo00185a034.

Catalán, J. (2009). Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. The Journal of Physical Chemistry B, 113(17), 5951-5960. doi: 10.1021/jp8095727.

Kamlet, M. J., Abboud, J. L. M., Abraham, M. H., & Taft, R. W. (1983). Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, pi.*,. alpha., and. beta., and some methods for simplifying the generalized solvatochromic equation. The Journal of Organic Chemistry, 48(17), 2877-2887. doi:10.1021/jo00165a018.

Laha, A. K., Das, P. K., & Bagchi, S. (2002). Study of preferential solvation in mixed binary solvent as a function of solvent composition and temperature by UV− Vis spectroscopic method. The Journal of Physical Chemistry A, 106(13), 3230-3234. doi: 10.1021/jp0121116.

Catalán, J., Díaz, C., & Garcia-Blanco, F. (2000). Characterization of binary solvent mixtures. The Journal of Organic Chemistry, 65(26), 9226-9229. doi: 10.1021/jo001008u.

Sandri, C., de Melo, C. E., Giusti, L. A., Rezende, M. C., & Machado, V. G. (2021). Preferential solvation index as a tool in the analysis of the behavior of solvatochromic probes in binary solvent mixtures. Journal of Molecular Liquids, 328, 115450.doi: 10.1016/j.molliq.2021.115450.

Khudhair, N. A., Kadhim, M. M., & Khadom, A. A. (2021). Effect of trimethoprim drug dose on corrosion behavior of stainless steel in simulated human body environment: experimental and theoretical investigations. Journal of Bio-and Tribo-Corrosion, 7(3), 124.doi: 10.1007/s40735-021-00559-8.

Yazdanshenas, R., & Gharib, F. (2017). Spectrophotometric determination of preferential solvation and solvation shell composition of morin hydrate in some water-aliphatic alcohol mixed solvents. Journal of Molecular Liquids, 243, 414-419.doi: 10.1016/j.molliq.2017.08.064.

Purkayastha, D. D., & Madhurima, V. (2013). Interactions in water–THF binary mixture by contact angle, FTIR and dielectric studies. Journal of Molecular Liquids, 187, 54-57. doi: 10.1016/j.molliq.2013.05.024.

Bozkurt, E., GÜL, H. İ., & TUĞRAK, M. (2017). Investigation of solvent effect on photophysical properties of some sulfonamides derivatives. Turkish Journal of Chemistry, 41(2), 282-293.doi: 10.3906/kim-1604-61.

Delgado, D. R., & Martínez, F. (2015). Preferential solvation of some structurally related sulfonamides in 1-propanol+ water co-solvent mixtures. Physics and Chemistry of Liquids, 53(3), 293-306. doi: 10.1080/00319104.2014.961191.

Vibha, K., Prachalith, N. C., Reddy, R. A., Ravikantha, M. N., & Thipperudrappa, J. (2023). Computational studies on sulfonamide drug molecules by density functional theory. Chemical Physics Impact, 6, 100147. doi: 10.1016/j.chphi.2022.100147.

Zakrzewski G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B & Fox D J. (2009) Gaussian 09, Revision D.01, Gaussian Inc, Wallingford, CT,.

Dennington R D , Keith T A & Millam J M. (2016) Gauss View, Version 6.0, Semichem Inc, Shawnee Mission KS.

Shrikrupa C, Patil S A, Wari M N , Mulimani B G & Inamdar S R. (2023). Dipole Moments of Coumarin 500 Dye in Aqueous Ethanol: Solvatochromic and Computational Study, IJIRT, 10(3), 349-353.

Adsmond, D. A., & Grant, D. J. (2001). Hydrogen bonding in sulfonamides. Journal of pharmaceutical sciences, 90(12), 2058-2077.

Lakowicz J R. (1983). Principles of fluorescence spectroscopy, Springer, New York.

Miotke-Wasilczyk, M., Józefowicz, M., Strankowska, J., & Kwela, J. (2021). The Role of Hydrogen Bonding in Paracetamol–Solvent and Paracetamol–Hydrogel Matrix,Interactions. Materials, 14(8),1842. doi: 10.3390/ma14081842.

Published

2024-04-25

Issue

Section

Research Articles