Gamma Ray Bursts: Fundamentals, Challenges and Insights from Recent Observations
DOI:
https://doi.org/10.12723/mjs.68.1Keywords:
Gamma-rays, X-ray flashes (XRF), Afterglow, Prompt emission, Gamma-ray burst modelsAbstract
In astronomy, gamma-ray bursts (GRBs) are some of the most intriguing and enigmatic phenomena. GRBs are the most luminous events in the cosmos, and they are bursts of strong but brief gamma-ray (GR) flashes. GRBs have a highly interesting nature and can last anywhere from a few hundred seconds to a tiny fraction of a second. A GRB produces an afterglow that lasts longer and gradually fades. The discovery of afterglow has brought about a revolution in the area of GRB. We have discussed GRBs and their classifications in this paper. Moreover, we summarized the mechanisms behind the bursts, the features seen, the afterglow, and the fireball model of GRBs. Apart from the fireball model of GRBs, alternative models are also discussed, for example, the accretion model for the long GRBs and the pulsar model used to explain the short GRBs.
References
P. D’Avanzo, “Short gamma-ray bursts: A review,” Journal of High Energy Astrophysics, vol. 7, pp. 73–80, 2015.
T. Le and V. Mehta, “Revisiting the redshift distribution of Gamma-Ray bursts in the swift era,” The Astrophysical Journal, vol. 837, no. 1, p. 17, 2017.
F. Piron, “Gamma-ray bursts at high and very high energies,” Comptes Rendus. Physique, vol. 17, no. 6, pp. 617–631, 2016.
M. Patel et al., “GRB 201015A and the nature of low-luminosity soft gamma-ray bursts,” Monthly Notices of the Royal Astronomical Society, vol. 523, no. 4, pp. 4923–4937, 2023.
J.-L. Atteia et al., “The maximum isotropic energy of gamma-ray bursts,” The Astrophysical Journal, vol. 837, no. 2, p. 119, 2017.
A. Pescalli, G. Ghirlanda, O. S. Salafia, G. Ghisellini, F. Nappo, and R. Salvaterra, “Luminosity function and jet structure of Gamma-Ray Burst,” Monthly Notices of the Royal Astronomical Society, vol. 447, no. 2, pp. 1911–1921, 2015.
N. Gehrels and P. Mészáros, “Gamma-Ray Bursts,” Science, vol. 337, no. 6097, pp. 932–936, Aug. 2012, doi: 10.1126/science.1216793.
P. Mészáros, “Theories of Gamma-Ray Bursts,” Annu. Rev. Astron. Astrophys., vol. 40, no. 1, pp. 137–169, Sep. 2002, doi: 10.1146/annurev.astro.40.060401.093821.
E. P. Mazets et al., “Cosmic gamma-ray burst spectroscopy,” Astrophys Space Sci, vol. 82, no. 2, pp. 261–282, Mar. 1982, doi: 10.1007/BF00651438.
C. A. Meegan et al., “Spatial distribution of γ-ray bursts observed by BATSE,” Nature, vol. 355, no. 6356, pp. 143–145, 1992.
E. etal Costa et al., “Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997,” Nature, vol. 387, no. 6635, pp. 783–785, 1997.
T. Piran, “The physics of gamma-ray bursts,” Rev. Mod. Phys., vol. 76, no. 4, pp. 1143–1210, Jan. 2005, doi: 10.1103/RevModPhys.76.1143.
T. J. Galama et al., “An unusual supernova in the error box of the γ-ray burst of 25 April 1998,” Nature, vol. 395, no. 6703, pp. 670–672, 1998.
M. G. Dainotti et al., “Inferring the Redshift of More than 150 GRBs with a Machine-learning Ensemble Model,” The Astrophysical Journal Supplement Series, vol. 271, no. 1, p. 22, 2024.
A. Cucchiara et al., “A Photometric Redshift of z 9.4 for GRB 090429B,” The Astrophysical Journal, vol. 736, no. 1, p. 7, 2011.
U. Kolb, Extreme environment astrophysics. 2010. Accessed: Jan. 31, 2024. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2010eea..book.....K/abstract
C. Kouveliotou et al., “Identification of two classes of gamma-ray bursts,” Astrophysical Journal, Part 2-Letters (ISSN 0004-637X), vol. 413, no. 2, p. L101-L104., vol. 413, pp. L101–L104, 1993.
C. Kouveliotou et al., “The rarity of soft γ-ray repeaters deduced from reactivation of SGR1806–20,” Nature, vol. 368, no. 6467, pp. 125–127, 1994.
S. Mukherjee, E. D. Feigelson, G. J. Babu, F. Murtagh, C. Fraley, and A. Raftery, “Three types of gamma-ray bursts,” The Astrophysical Journal, vol. 508, no. 1, p. 314, 1998.
I. Horváth, “A third class of gamma-ray bursts?,” The Astrophysical Journal, vol. 508, no. 2, p. 757, 1998.
J. Hakkila, D. J. Haglin, G. N. Pendleton, R. S. Mallozzi, C. A. Meegan, and R. J. Roiger, “Gamma-ray burst class properties,” The Astrophysical Journal, vol. 538, no. 1, p. 165, 2000.
K. Toma, R. Yamazaki, and T. Nakamura, “A possible origin of bimodal distribution of gamma-ray bursts,” The Astrophysical Journal, vol. 620, no. 2, p. 835, 2005.
E. Berger, W. Fong, and R. Chornock, “An r-process kilonova associated with the short-hard GRB 130603B,” The Astrophysical Journal Letters, vol. 774, no. 2, p. L23, 2013.
E. Berger, W. Fong, and R. Chornock, “An r-process kilonova associated with the short-hard GRB 130603B,” The Astrophysical Journal Letters, vol. 774, no. 2, p. L23, 2013.
N. R. Tanvir et al., “A ‘kilonova’associated with the short-duration γ-ray burst GRB 130603B,” Nature, vol. 500, no. 7464, pp. 547–549, 2013.
“Abbott, B. P.et al., ‘Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A’,The Astrophysical Journal, vol. 848, no. 2, IOP, 2017. doi:10.3847/2041-8213/aa920c. - Google Search.” Accessed: Apr. 05, 2024. [Online]. Available: https://www.google.com/search?q=Abbott%2C+B.+P.et+al.%2C+%E2%80%9CGravitational+Waves+and+Gamma-Rays+from+a+Binary+Neutron+Star+Merger%3A+GW170817+and+GRB+170817A%E2%80%9D%2CThe+Astrophysical+Journal%2C+vol.+848%2C+no.+2%2C+IOP%2C+2017.+doi%3A10.3847%2F2041-8213%2Faa920c.&oq=Abbott%2C+B.+P.et+al.%2C+%E2%80%9CGravitational+Waves+and+Gamma-Rays+from+a+Binary+Neutron+Star+Merger%3A+GW170817+and+GRB+170817A%E2%80%9D%2CThe+Astrophysical+Journal%2C+vol.+848%2C+no.+2%2C+IOP%2C+2017.+doi%3A10.3847%2F2041-8213%2Faa920c.&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIGCAEQRRg80gEIMTMyNWowajeoAgiwAgE&sourceid=chrome&ie=UTF-8
F. Bufano et al., “The highly energetic expansion of SN 2010bh associated with GRB 100316D,” The Astrophysical Journal, vol. 753, no. 1, p. 67, 2012.
Z. Cano et al., “A trio of gamma-ray burst supernovae:-GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu,” Astronomy & Astrophysics, vol. 568, p. A19, 2014.
D. A. Kann et al., “Highly luminous supernovae associated with gamma-ray bursts-I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae,” Astronomy & Astrophysics, vol. 624, p. A143, 2019.
S. Klose et al., “Four grb supernovae at redshifts between 0.4 and 0.8-the bursts grb 071112c, 111228a, 120714b, and 130831a,” Astronomy & Astrophysics, vol. 622, p. A138, 2019.
C. K. Jespersen et al., “An unambiguous separation of gamma-ray bursts into two classes from prompt emission alone,” The Astrophysical Journal Letters, vol. 896, no. 2, p. L20, 2020.
A. S. Fruchter et al., “Long γ-ray bursts and core-collapse supernovae have different environments,” Nature, vol. 441, no. 7092, pp. 463–468, 2006.
V. V. Sokolov et al., “Host galaxies of gamma-ray bursts: Spectral energy distributions and internal extinction,” Astronomy & Astrophysics, vol. 372, no. 2, pp. 438–455, 2001.
J. P. Norris, G. F. Marani, and J. T. Bonnell, “Connection between energy-dependent lags and peak luminosity in gamma-ray bursts,” The Astrophysical Journal, vol. 534, no. 1, p. 248, 2000.
E. Costa and F. Frontera, Gamma-ray Bursts in the Afterglow Era: Proceedings of the International Workshop Held in Rome, Italy, 17-20 October 2000, vol. 8. Springer Science & Business Media, 2001. Accessed: Jan. 31, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=5dlHEeVNZ_oC&oi=fnd&pg=PA1&dq=E.+Costa+and+F.+Frontera,+Gamma-ray+Bursts+in+the+Afterglow+Era:+Proceedings+of+the+International+Workshop+Held+in+Rome,+Italy,+17-20+October+2000,+vol.+8.+Springer+Science+%26+Business+Media,+2001.&ots=c-luvGGQMX&sig=gosP8VDa63_WbitRwKu0Kni5o18
A. Rossi et al., “The peculiar short-duration GRB 200826A and its supernova,” The Astrophysical Journal, vol. 932, no. 1, p. 1, 2022.
J. Yang et al., “A long-duration gamma-ray burst with a peculiar origin,” Nature, vol. 612, no. 7939, pp. 232–235, 2022.
A. J. Levan et al., “Heavy-element production in a compact object merger observed by JWST,” Nature, vol. 626, no. 8000, pp. 737–741, 2024.
J. P. Fynbo et al., “A new type of massive stellar death: no supernovae from two nearby long gamma ray bursts,” Nature, vol. 444, no. arXiv: astro-ph/0608313, pp. 1047–1049, 2006.
H.-J. Lü, E.-W. Liang, B.-B. Zhang, and B. Zhang, “A new classification method for gamma-ray bursts,” The Astrophysical Journal, vol. 725, no. 2, p. 1965, 2010.
P. Y. Minaev and A. S. Pozanenko, “The E p, i–E iso correlation: type I gamma-ray bursts and the new classification method,” Monthly Notices of the Royal Astronomical Society, vol. 492, no. 2, pp. 1919–1936, 2020.
K. Misra and K. G. Arun, “Evidence for Two Distinct Populations of Kilonova-associated Gamma-Ray Bursts,” The Astrophysical Journal Letters, vol. 949, no. 2, p. L22, 2023.
D. W. Fox et al., “Early optical emission from the γ-ray burst of 4 October 2002,” nature, vol. 422, no. 6929, pp. 284–286, 2003.
C. Akerlof et al., “Observation of contemporaneous optical radiation from a γ-ray burst,” Nature, vol. 398, no. 6726, pp. 400–402, 1999.
W. T. Vestrand et al., “The Bright Optical Flash and Afterglow from the Gamma-Ray Burst GRB 130427A,” Science, vol. 343, no. 6166, pp. 38–41, Jan. 2014, doi: 10.1126/science.1242316.
E. M. Rossi, A. M. Beloborodov, and M. J. Rees, “Neutron-loaded outflows in gamma-ray bursts,” Monthly Notices of the Royal Astronomical Society, vol. 369, no. 4, pp. 1797–1807, 2006.
D. Band et al., “BATSE observations of gamma-ray burst spectra. I-Spectral diversity,” Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 413, no. 1, p. 281-292., vol. 413, pp. 281–292, 1993.
D. N. Burrows et al., “The Swift X-Ray Telescope,” Space Sci Rev, vol. 120, no. 3–4, pp. 165–195, Oct. 2005, doi: 10.1007/s11214-005-5097-2.
W. Zheng, X. Wu, T. Sakamoto, Y. Urata, and S. B. Pandey, “Gamma-ray burst in swift and Fermi era,” Advances in Astronomy, vol. 2015. Hindawi, 2015. Accessed: Apr. 05, 2024. [Online]. Available: https://www.hindawi.com/journals/aa/2015/543624/abs/
A. M. Beloborodov, “Collisional mechanism for gamma-ray burst emission,” Monthly Notices of the Royal Astronomical Society, vol. 407, no. 2, pp. 1033–1047, 2010.
A. Pe’er, P. Mészáros, and M. J. Rees, “The observable effects of a photospheric component on GRB and XRF prompt emission spectrum,” The Astrophysical Journal, vol. 642, no. 2, p. 995, 2006.
A. Pe’Er, “Physics of gamma-ray bursts prompt emission,” Advances in Astronomy, vol. 2015, 2015, Accessed: Jan. 31, 2024. [Online]. Available: https://www.hindawi.com/journals/AA/2015/907321/
E. Nakar and T. Piran, “Time-scales in long gamma-ray bursts,” Monthly Notices of the Royal Astronomical Society, vol. 331, no. 1, pp. 40–44, 2002.
G. J. Fishman and C. A. Meegan, “Gamma-Ray Bursts,” Annu. Rev. Astron. Astrophys., vol. 33, no. 1, pp. 415–458, Sep. 1995, doi: 10.1146/annurev.aa.33.090195.002215.
E. E. Fenimore and E. Ramirez-Ruiz, “Redshifts For 220 BATSE Gamma-Ray Bursts Determined by Variability and the Cosmological Consequences.” arXiv, Jul. 27, 2000. Accessed: Jan. 31, 2024. [Online]. Available: http://arxiv.org/abs/astro-ph/0004176
T. Sakamoto et al., “The first Swift BAT gamma-ray burst catalog,” The Astrophysical Journal Supplement Series, vol. 175, no. 1, p. 179, 2008.
G. Vianello, D. Götz, and S. Mereghetti, “The updated spectral catalogue of INTEGRAL gamma-ray bursts,” Astronomy & Astrophysics, vol. 495, no. 3, pp. 1005–1032, 2009.
D. Band et al., “BATSE observations of gamma-ray burst spectra. I-Spectral diversity,” Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 413, no. 1, p. 281-292., vol. 413, pp. 281–292, 1993.
C. Meegan et al., “The Fermi gamma-ray burst monitor,” The Astrophysical Journal, vol. 702, no. 1, p. 791, 2009.
N. Gehrels, E. Ramirez-Ruiz, and D. B. Fox, “Gamma-Ray Bursts in the Swift Era,” Annu. Rev. Astron. Astrophys., vol. 47, no. 1, pp. 567–617, Sep. 2009, doi: 10.1146/annurev.astro.46.060407.145147.
N. Gehrels and S. Razzaque, “Gamma-ray bursts in the swift-Fermi era,” Front. Phys., vol. 8, no. 6, pp. 661–678, Dec. 2013, doi: 10.1007/s11467-013-0282-3.
H. A. Krimm, S. D. Barthelmy, C. B. Markwardt, D. Sanwal, J. Tueller, and N. Gehrels, “The Swift-BAT Hard X-ray Transient Monitor,” AAS/High Energy Astrophysics Division# 9, vol. 9, pp. 13–47, 2006.
J. S. Bloom et al., “Closing in on a short-hard burst progenitor: constraints from early-time optical imaging and spectroscopy of a possible host galaxy of GRB 050509b,” The Astrophysical Journal, vol. 638, no. 1, p. 354, 2006.
W. B. Atwood et al., “The large area telescope on the Fermi gamma-ray space telescope mission,” The Astrophysical Journal, vol. 697, no. 2, p. 1071, 2009.
G. Ghirlanda, A. Celotti, and G. Ghisellini, “Extremely hard GRB spectra prune down the forest of emission models,” Astronomy & Astrophysics, vol. 406, no. 3, pp. 879–892, 2003.
B. E. Schaefer et al., “High-energy spectral breaks in gamma-ray bursts,” Astrophysical Journal, Part 2-Letters (ISSN 0004-637X), vol. 393, no. 2, July 10, 1992, p. L51-L54., vol. 393, pp. L51–L54, 1992.
G. N. Pendleton et al., “The identification of two different spectral types of pulses in gamma-ray bursts,” The Astrophysical Journal, vol. 489, no. 1, p. 175, 1997.
B.-B. Zhang, Z. L. Uhm, V. Connaughton, M. S. Briggs, and B. Zhang, “Synchrotron origin of the typical GRB band function—a case study of GRB 130606B,” The Astrophysical Journal, vol. 816, no. 2, p. 72, 2016.
K. C. Walker, B. E. Schaefer, and E. E. Fenimore, “Gamma-ray bursts have millisecond variability,” The Astrophysical Journal, vol. 537, no. 1, p. 264, 2000.
S. Xu, Y.-P. Yang, and B. Zhang, “On the synchrotron spectrum of GRB prompt emission,” The Astrophysical Journal, vol. 853, no. 1, p. 43, 2018.
R. D. Preece, M. S. Briggs, R. S. Mallozzi, G. N. Pendleton, W. S. Paciesas, and D. L. Band, “The synchrotron shock model confronts a ‘line of death’ in the BATSE gamma-ray burst data,” The Astrophysical Journal, vol. 506, no. 1, p. L23, 1998.
J. Van Paradijs et al., “Transient optical emission from the error box of the γ-ray burst of 28 February 1997,” Nature, vol. 386, no. 6626, pp. 686–689, 1997.
T. J.-L. Courvoisier, High energy astrophysics: an introduction. Springer Science & Business Media, 2012. Accessed: Jan. 31, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=DC23ll2fZUoC&oi=fnd&pg=PR4&dq=T.+J.-L.+Courvoisier,+High+energy+astrophysics:+an+introduction.+Springer+Science+%26+Business+Media,+2012.&ots=FsGnMSYThB&sig=U8mohy3iiMnyqpBWdOqD2GQ8mww
V. D’Elia and G. Stratta, “GRB 100614A and GRB 100615A: two extremely dark gamma-ray bursts,” Astronomy & Astrophysics, vol. 532, p. A48, 2011.
D. A. Frail, S. R. Kulkarni, L. Nicastro, M. Feroci, and G. B. Taylor, “The radio afterglow from the γ-ray burst of 8 May 1997,” Nature, vol. 389, no. 6648, pp. 261–263, 1997.
R. Willingale and P. Mészáros, “Gamma-Ray Bursts and Fast Transients: Multi-wavelength Observations and Multi-messenger Signals,” Space Sci Rev, vol. 207, no. 1–4, pp. 63–86, Jul. 2017, doi: 10.1007/s11214-017-0366-4.
B. Zhang and P. Mészáros, “GAMMA-RAY BURSTS: PROGRESS, PROBLEMS & PROSPECTS,” Int. J. Mod. Phys. A, vol. 19, no. 15, pp. 2385–2472, Jun. 2004, doi: 10.1142/S0217751X0401746X.
F. Nappo, G. Ghisellini, G. Ghirlanda, A. Melandri, L. Nava, and D. Burlon, “Afterglows from precursors in gamma-ray bursts. Application to the optical afterglow of GRB 091024,” Monthly Notices of the Royal Astronomical Society, vol. 445, no. 2, pp. 1625–1635, 2014.
D. Miceli and L. Nava, “Gamma-Ray Bursts Afterglow Physics and the VHE Domain,” Galaxies, vol. 10, no. 3, p. 66, 2022.
L. Nava, L. Sironi, G. Ghisellini, A. Celotti, and G. Ghirlanda, “Afterglow emission in gamma-ray bursts–I. Pair-enriched ambient medium and radiative blast waves,” Monthly Notices of the Royal Astronomical Society, vol. 433, no. 3, pp. 2107–2121, 2013.
V. Bromm and A. Loeb, “The expected redshift distribution of gamma-ray bursts,” The Astrophysical Journal, vol. 575, no. 1, p. 111, 2002.
F. D. Seward and P. A. Charles, Exploring the X-ray Universe. Cambridge University Press, 2010. Accessed: Apr. 05, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=qLMaoIZ5BDsC&oi=fnd&pg=PT28&dq=Seward,+F.+D.+and+Charles,+P.+A.,Exploring+the+X-Ray+Universe.+1995,+p.+414.&ots=mllhJ3kbqH&sig=dwqrKWklwqT8NtCCgTXKYDP7JGk
V. Brdar, J. Kopp, and J. Liu, “Dark gamma-ray bursts,” Phys. Rev. D, vol. 95, no. 5, p. 055031, Mar. 2017, doi: 10.1103/PhysRevD.95.055031.
M. De Pasquale et al., “A comparative study of the X-ray afterglow properties of optically bright and dark gamma-ray bursts,” The Astrophysical Journal, vol. 592, no. 2, p. 1018, 2003.
T. Piran, “Gamma-ray bursts and the fireball model,” Physics Reports, vol. 314, no. 6, pp. 575–667, 1999.
J. Goodman, “Are gamma-ray bursts optically thick?,” Astrophysical Journal, Part 2-Letters to the Editor (ISSN 0004-637X), vol. 308, Sept. 15, 1986, p. L47-L50., vol. 308, pp. L47–L50, 1986.
B. Paczynski, “Gamma-ray bursters at cosmological distances,” Astrophysical Journal, Part 2-Letters to the Editor (ISSN 0004-637X), vol. 308, Sept. 15, 1986, p. L43-L46., vol. 308, pp. L43–L46, 1986.
T. Piran, “Gamma-ray bursts and the fireball model,” Physics Reports, vol. 314, no. 6, pp. 575–667, 1999.
T. Piran, “Gamma-Ray Bursts—When theory meets observations,” in AIP Conference Proceedings, American Institute of Physics, 2001, pp. 575–586. Accessed: Jan. 31, 2024. [Online]. Available: https://pubs.aip.org/aip/acp/article-abstract/586/1/575/573210
S. Kobayashi, B. Zhang, P. Meszaros, and D. N. Burrows, “Inverse Compton X-ray Flare from GRB Reverse Shock,” ApJ, vol. 655, no. 1, pp. 391–395, Jan. 2007, doi: 10.1086/510198.
R. Sari and T. Piran, “Cosmological GRBs: Internal vs. External Shocks,” Monthly Notices of the Royal Astronomical Society, vol. 287, no. 1, pp. 110–116, May 1997, doi: 10.1093/mnras/287.1.110.
T. Piran, “Gamma-ray bursts and the fireball model,” Physics Reports, vol. 314, no. 6, pp. 575–667, 1999.
E. Waxman, “Gamma-ray-burst afterglow: supporting the cosmological fireball model, constraining parameters, and making predictions,” The Astrophysical Journal, vol. 485, no. 1, p. L5, 1997.
T. Piran, “The physics of gamma-ray bursts,” Rev. Mod. Phys., vol. 76, no. 4, pp. 1143–1210, Jan. 2005, doi: 10.1103/RevModPhys.76.1143.
R. Narayan, T. Piran, and P. Kumar, “Accretion models of gamma-ray bursts,” The Astrophysical Journal, vol. 557, no. 2, p. 949, 2001.
R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz, “Self-similar accretion flows with convection,” The Astrophysical Journal, vol. 539, no. 2, p. 798, 2000.
J. M. Stone, J. E. Pringle, and M. C. Begelman, “Hydrodynamical non-radiative accretion flows in two dimensions,” Monthly Notices of the Royal Astronomical Society, vol. 310, no. 4, pp. 1002–1016, 1999.
E. Quataert and A. Gruzinov, “Convection-dominated accretion flows,” The Astrophysical Journal, vol. 539, no. 2, p. 809, 2000.
I. V. Igumenshchev, M. A. Abramowicz, and R. Narayan, “Numerical simulations of convective accretion flows in three dimensions,” The Astrophysical Journal, vol. 537, no. 1, p. L27, 2000.
J. M. Cohen and E. Mustafa, “Gamma-ray pulsar model,” Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 319, Aug. 15, 1987, p. 930-938., vol. 319, pp. 930–938, 1987.
A. F. Cheng and M. A. Ruderman, “Pair-production discharges above pulsar polar caps,” Astrophysical Journal, Part 1, vol. 214, June 1, 1977, p. 598-606., vol. 214, pp. 598–606, 1977.
M. A. Ruderman and P. G. Sutherland, “Theory of pulsars-Polar caps, sparks, and coherent microwave radiation,” The Astrophysical Journal, vol. 196, pp. 51–72, 1975.
W. M. Fawley, J. Arons, and E. T. Scharlemann, “Potential drops above pulsar polar caps-Acceleration of nonneutral beams from the stellar surface,” Astrophysical Journal, Part 1, vol. 217, Oct. 1, 1977, p. 227-243. Research supported by the Miller Foundation, vol. 217, pp. 227–243, 1977.
F. C. Michel, “Rotating magnetosphere: acceleration of plasma from the surface,” Astrophysical Journal, Vol. 192, pp. 713-718 (1974), vol. 192, pp. 713–718, 1974.
J. Arons, “Pair creation above pulsar polar caps-Steady flow in the surface acceleration zone and polar CAP X-ray emission,” The Astrophysical Journal, vol. 248, pp. 1099–1116, 1981.
J. Arons, “Pulsars as gamma ray sources.,” Astronomy and Astrophysics Supplement, v. 120, p. 49-60, vol. 120, pp. 49–60, 1996.
J. Arons and E. T. Scharlemann, “Pair formation above pulsar polar caps-Structure of the low altitude acceleration zone,” The Astrophysical Journal, vol. 231, pp. 854–879, 1979.
T. Erber, “High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields,” Rev. Mod. Phys., vol. 38, no. 4, pp. 626–659, Oct. 1966, doi: 10.1103/RevModPhys.38.626.
Z.-P. Jin et al., “The Macronova in GRB 050709 and the GRB-macronova connection,” Nature Communications, vol. 7, no. 1, p. 12898, 2016.
A. Von Kienlin et al., “The fourth fermi-gbm gamma-ray burst catalog: A decade of data,” The Astrophysical Journal, vol. 893, no. 1, p. 46, 2020.
R. Gupta, S. B. Pandey, A. K. Ror, A. Aryan, and S. N. Tiwari, “Recent observations of peculiar Gamma-ray bursts using 3.6 m Devasthal Optical Telescope (DOT).” arXiv, Jul. 28, 2023. Accessed: Jan. 31, 2024. [Online]. Available: http://arxiv.org/abs/2307.15585
A. Rossi et al., “A blast from the infant Universe: The very high-z GRB 210905A,” Astronomy & Astrophysics, vol. 665, p. A125, 2022.
M. A. Williams et al., “GRB 221009A: Discovery of an Exceptionally Rare Nearby and Energetic Gamma-Ray Burst,” The Astrophysical Journal Letters, vol. 946, no. 1, p. L24, 2023.
A. Von Kienlin, C. Meegan, and A. Goldstein, “GRB 170817A: Fermi GBM detection.,” GRB Coordinates Network, vol. 21520, p. 1, 2017.
C. Messick et al., “Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data,” Phys. Rev. D, vol. 95, no. 4, p. 042001, Feb. 2017, doi: 10.1103/PhysRevD.95.042001.
B. P. Abbott, “Multi-messenger observations of a binary neutron star merger,” 2017, Accessed: Apr. 05, 2024. [Online]. Available: https://iopscience.iop.org/article/10.3847/2041-8213/aa91c9/meta
V. Savchenko et al., “INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817,” The Astrophysical Journal Letters, vol. 848, no. 2, p. L15, 2017.
K. D. Alexander et al., “The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta,” The Astrophysical Journal Letters, vol. 848, no. 2, p. L21, 2017.
P. S. Cowperthwaite et al., “The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models,” The Astrophysical Journal Letters, vol. 848, no. 2, p. L17, 2017.
R. Chornock et al., “The electromagnetic detection of near-infrared signatures of r-process nucleosynthesis with gemini-south counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. detection of near-infrared signatures of r-process nucleosynthesis with gemini-south,” The Astrophysical Journal Letters, vol. 848, no. 2, p. L19, 2017.
J. Vernet et al., “X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope,” Astronomy & Astrophysics, vol. 536, p. A105, 2011.
M. S. Longair, High energy astrophysics. Cambridge university press, 2010. Accessed: Jan. 31, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=4tEPEAAAQBAJ&oi=fnd&pg=PP1&dq=%09M.+S.+Longair,+High+energy+astrophysics.+Cambridge+university+press,+2010.&ots=a7V4TKXZbc&sig=2x9ynZQPWYRgOpgDdXhiowOuCD8
P. Schady, “Gamma-ray bursts and their use as cosmic probes,” R. Soc. open sci., vol. 4, no. 7, p. 170304, Jul. 2017, doi: 10.1098/rsos.170304.
V. Bhalerao et al., “Science with the Daksha High Energy Transients Mission.” arXiv, Jan. 27, 2024. Accessed: Apr. 05, 2024. [Online]. Available: http://arxiv.org/abs/2211.12052
S. Schanne, “Overview of the SVOM Gamma-Ray Burst mission under development with a focus on its Trigger system,” AAS/High Energy Astrophysics Division# 16, vol. 16, pp. 103–26, 2017.
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Arbind Pradhan, Asish Jyoti Boruah, Liza Devi, Biplob Sarkar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.