Vol. 23 No. 2 (2024): Mapana Journal of Sciences
Review Articles

Plasma Technologies: A Sustainable Frontier for Environmental Conservation

Liza Devi
Department of Applied Sciences, Tezpur University
Asish Jyoti Boruah
Department of Applied Sciences, Tezpur University
Biplob Sarkar
Department of Applied Sciences, Tezpur University
Khwairakpam Shantakumar Singh
Department of Education, Assam University, Silchar, Assam, India

Published 2024-07-04

Keywords

  • Plasma,
  • Crystals,
  • Semiconductors,
  • Fusion,
  • Power,
  • Polymers
  • ...More
    Less

Abstract

Plasma naturally exists throughout the universe, and recently, mankind has realized its vast technological applications. The scope of current plasma physics experiments has produced several well-established industrial applications in addition to several exciting new ones. This review aims to give a basic overview of the area of plasmas and the role plasma physics plays in current scientific endeavours to the broader scientific and technological community. This paper describes the benefits of plasma technology to humankind in various fields, including medicine and engineering disciplines like mechanical, chemical, and electrical. The technological applications include materials processing like semiconductor manufacturing, surface treatment, lighting, cutting by plasma, and plasma etching. Also, the various environmental applications of plasma as a roadmap to environmental sustainability are discussed. The possibilities for plasma physics in the future are summarized in conclusion.

References

  1. H. Boenig, Plasma science and technology. Cornell University Press, 2019. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=0_6tDwAAQBAJ&oi=fnd&pg=PA9&dq=Unlike+solids,+liquids,+and+gases,+plasma+consists+of+particles+that+are+charged,+like+electrons+and+ions++book&ots=DiwPdhBx2h&sig=Eg3vC7EZjK4B5G6127tw5gdGRuA
  2. W. B. Thompson, An introduction to plasma physics. Elsevier, 2013. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=26g3BQAAQBAJ&oi=fnd&pg=PP1&dq=Unlike+solids,+liquids,+and+gases,+plasma+consists+of+particles+that+are+charged,+like+electrons+and+ions++book&ots=SBIk8P1vpk&sig=ZFPQafsICIYDuGyNnTlpnfFJBEw
  3. C. Francis F, “Introduction to plasma physics and controlled fusion.” Springer, 2016. Accessed: May 09, 2024. [Online]. Available: http://eprints.stta.ac.id/207/
  4. M. F. Zhukov and I. M. Zasypkin, Thermal plasma torches: design, characteristics, application. Cambridge Int Science Publishing, 2007. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=lj7k9sJRwZkC&oi=fnd&pg=PA1&dq=Artificial+plasma+is+generated+in+devices+like+plasma+torches,+fluorescent+lights,+and+plasma+TVs.+&ots=WQBNQ9sazv&sig=1HybZw26phlv4sWq1sFm1mf9Rqo
  5. R. C. Ropp, The chemistry of artificial lighting devices: lamps, phosphors and cathode ray tubes. Elsevier, 2013. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=eaj8BAAAQBAJ&oi=fnd&pg=PP1&dq=Artificial+plasma+is+generated+in+devices+like+plasma+torches,+fluorescent+lights,+and+plasma+TVs.+&ots=-UYpNLdcNO&sig=i4gRS5Wc5ktkwn1DFqsSn8BFfOg
  6. G. Lister, J. Lawler, W. Lapatovich, and V. Godyak, “The physics of discharge lamps,” Rev. Mod. Phys., vol. 76, no. 2, pp. 541–598, Jun. 2004, doi: 10.1103/RevModPhys.76.541.
  7. B. R. Adhikari and R. Khanal, “Introduction to the plasma state of matter,” Himalayan Physics, vol. 4, pp. 60–64, 2013.
  8. S. Chandra, Textbook of plasma physics. CBS Publishers & Distributors Pvt. Ltd, 2017. Accessed: May 09, 2024. [Online]. Available: http://macl-ustm.digitallibrary.co.in/handle/123456789/5800
  9. C. Norgren, “Electron-scale physics in space plasma: Thin boundaries and magnetic reconnection,” PhD Thesis, Acta Universitatis Upsaliensis, 2016. Accessed: May 06, 2024. [Online]. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1049011
  10. S. Eliezer and Y. Eliezer, The fourth state of matter: an introduction to plasma science. CRC Press, 2001. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=5oi9BwAAQBAJ&oi=fnd&pg=PP1&dq=First+identified+by+William+Crooks+in+1879,+%22plasma%22+was+not+given+its+current+name+until+1928,+when+Irving+Langmuir+coined+it.+Langmuir+theorized+the+existence+of+a+boundary+layer,+or+plasma+sheath,+between+solid+particles+and+ionized+plasma+book&ots=OrzHc7MGcz&sig=O35Hj9e21et3Xo-bI3Zq2BBTm7E
  11. D. Pratt, “Trends in Cosmology: Beyond the Big Bang,” New Scientist, vol. 21, p. 3, 1991.
  12. A. Bogaerts and E. C. Neyts, “Plasma Technology: An Emerging Technology for Energy Storage,” ACS Energy Lett., vol. 3, no. 4, pp. 1013–1027, Apr. 2018, doi: 10.1021/acsenergylett.8b00184.
  13. J. Mahaffey, Fusion. Infobase Holdings, Inc, 2020. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=TtyPEAAAQBAJ&oi=fnd&pg=PP1&dq=Nuclear+fusion+reaction+as+a+future+energy++source+is+one+of+them+%5B12%5D.+Scientists+are+working+tirelessly+to+achieve+controlled+nuclear+fusion,+a+process+that+replicates+the+sun%27s+energy+source,+to+provide+clean+and+virtually+limitless+power+for+our+world.+book+plasma&ots=g2etoYsabd&sig=OrYQP69CQnEpAlW6RKhgRm8G5Kk
  14. R. Herman, Fusion: the search for endless energy. Cambridge University Press, 1990. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=275R3CWhKjcC&oi=fnd&pg=PR9&dq=Nuclear+fusion+reaction+as+a+future+energy++source+is+one+of+them+%5B12%5D.+Scientists+are+working+tirelessly+to+achieve+controlled+nuclear+fusion,+a+process+that+replicates+the+sun%27s+energy+source,+to+provide+clean+and+virtually+limitless+power+for+our+world.+book+plasma&ots=79SGpG-LI2&sig=QKNMeq1WDo5NOnC92vlLhrHeiz8
  15. L. J. Reinders, The Fairy Tale of Nuclear Fusion. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-64344-7.
  16. C. Hartman, “Plasma Science: Enabling Technology, Sustainability, Security, and Exploration,” National Academies of Sciences, 2021. Accessed: May 06, 2024. [Online]. Available: https://www.osti.gov/biblio/1854930
  17. A. Gleizes, J.-J. Gonzalez, and P. Freton, “Thermal plasma modelling,” Journal of Physics D: Applied Physics, vol. 38, no. 9, p. R153, 2005.
  18. M. S. Murillo and J. C. Weisheit, “Dense plasmas, screened interactions, and atomic ionization,” Physics Reports, vol. 302, no. 1, pp. 1–65, 1998.
  19. B. M. Smirnov, Physics of ionized gases. John Wiley & Sons, 2008. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=NSVpkczoglAC&oi=fnd&pg=PP2&dq=The+definition+of+plasma+is+dependent+on+several+parameters,+such+as+temperature,+ionization+level,+size,+density,+and+assumptions+of+the+model+that+describes+it++book&ots=GGb-1ofpbi&sig=Aw9-CQs-_583OQ8hI2ND9Z_9mh0
  20. S. Samal, “Thermal plasma technology: The prospective future in material processing,” Journal of cleaner production, vol. 142, pp. 3131–3150, 2017.
  21. N. Venkatramani, “Thermal plasmas in material processing,” Bull. Mater. Sci., vol. 18, no. 6, pp. 741–754, Oct. 1995, doi: 10.1007/BF02744808.
  22. L. Bárdos and H. Baránková, “Cold atmospheric plasma: Sources, processes, and applications,” Thin solid films, vol. 518, no. 23, pp. 6705–6713, 2010.
  23. I. Adamovich et al., “The 2017 Plasma Roadmap: Low temperature plasma science and technology,” Journal of Physics D: Applied Physics, vol. 50, no. 32, p. 323001, 2017.
  24. T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, “Ultracold neutral plasmas,” Physics Reports, vol. 449, no. 4, pp. 77–130, Sep. 2007, doi: 10.1016/j.physrep.2007.04.007.
  25. S. L. Rolston, “Ultracold neutral plasmas,” Physics, vol. 1, p. 2, 2008.
  26. R. J. Goldston, Introduction to plasma physics. CRC Press, 2020. Accessed: May 07, 2024. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.1201/9780367806958/introduction-plasma-physics-goldston
  27. B. T. Tsurutani et al., “Space plasma physics: A review,” IEEE Transactions on Plasma Science, vol. 51, no. 7, pp. 1595–1655, 2022.
  28. R. Soler and J. L. Ballester, “Theory of fluid instabilities in partially ionized plasmas: An overview,” Frontiers in Astronomy and Space Sciences, vol. 9, p. 789083, 2022.
  29. R. Fitzpatrick, Plasma physics: an introduction. Crc Press, 2022. Accessed: May 07, 2024. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.1201/9781003268253/plasma-physics-richard-fitzpatrick
  30. M. Moisan and J. Pelletier, Physics of collisional plasmas: introduction to high-frequency discharges. Springer Science & Business Media, 2012. Accessed: May 09, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=zSXpoK6wO1EC&oi=fnd&pg=PR3&dq=+In+comparison+to+collision+less+plasmas,+collisional+plasmas+are+typically+denser+and+colder.+&ots=cF8r1mjxrn&sig=yFqGhCRlYKEC_UI6kH41rWse8ck
  31. R. C. Davidson, Physics of nonneutral plasmas. World Scientific Publishing Company, 2001. Accessed: May 07, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=5s02DwAAQBAJ&oi=fnd&pg=PR7&dq=Physics+of+Nonneutral+Plasmas+https://doi.org/10.1142/p251&ots=mxf14506Fl&sig=kCI_28z9FQNQBrovH8k0mhQItu0
  32. J. J. Bollinger, R. L. Spencer, and R. C. Davidson, “NON-NEUTRAL PLASMA PHYSICS.” IlL, 1999. Accessed: May 09, 2024. [Online]. Available: https://www.academia.edu/download/47575547/Toroidal_magnetic_confinement_of_non-neu20160727-30096-5kjitt.pdf
  33. B. Scott, Turbulence and Instabilities in Magnetised Plasmas, Volume 1: Fluid drift turbulence. IOP Publishing, 2021. Accessed: May 07, 2024. [Online]. Available: https://iopscience.iop.org/book/mono/978-0-7503-2504-2
  34. C. Uberoi, Introduction to unmagnetized plasmas. PHI Learning Pvt. Ltd., 1997. Accessed: May 07, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=caa2CAAAQBAJ&oi=fnd&pg=PP1&dq=Introduction+to+Unmagnetized+Plasmas+Book+by+Chanchal+Uberoi&ots=fdtwLZq_lN&sig=DdgVgZ_7ZRThQnTX5Aq2YiOVKwc
  35. D. A. Gurnett and A. Bhattacharjee, Introduction to plasma physics: with space and laboratory applications. Cambridge university press, 2005. Accessed: May 07, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=VcueZlunrbcC&oi=fnd&pg=PR9&dq=Introduction+to+Plasma+Physics:+With+Space+and+Laboratory+Applications+By+D.+A.+Gurnett,+A.+Bhattacharjee&ots=SCwaFIlRwg&sig=egmfi0upzJCX8geY65pPbRyzGLM
  36. P. K. Chu and X. Lu, Low temperature plasma technology: methods and applications. CRC press, 2013. Accessed: May 08, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=ysPKvATWG-0C&oi=fnd&pg=PP1&dq=Low+Temperature+Plasma+Technology:+Methods+and+Applications+edited+by+Paul+K.+Chu,+XinPei+Lu&ots=f6P5Z9JEge&sig=K5ecIDuYVZyLPGEGEtZ2kXjyw8g
  37. P. K. Shukla, Dust Plasma Interaction in Space. Nova Publishers, 2002. Accessed: May 08, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=BPYiyWSa_XgC&oi=fnd&pg=PP11&dq=Dust+Plasma+Interaction+in+Space+(English,+Hardcover,+Shukla+P+K)&ots=JAZrcExbwh&sig=UZeOrt110JQSOFNuo1KJOB-CEwU
  38. R. L. Merlino, “Dusty plasmas and applications in space and industry,” Plasma Physics Applied, vol. 81, pp. 73–110, 2006.
  39. S. Popel, “Dusty (complex) plasmas: recent developments, advances, and unsolved problems,” 38th COSPAR Scientific Assembly, vol. 38, p. 2, 2010.
  40. G. E. Morfill, H. M. Thomas, U. Konopka, and M. Zuzic, “The plasma condensation: Liquid and crystalline plasmas,” Physics of Plasmas, vol. 6, no. 5, pp. 1769–1780, 1999.
  41. G. E. Morfill et al., “A review of liquid and crystalline plasmas—new physical states of matter?,” Plasma Physics and Controlled Fusion, vol. 44, no. 12B, p. B263, 2002.
  42. N. R. Council et al., Plasma processing of materials: scientific opportunities and technological challenges. National Academies Press, 1991. Accessed: May 07, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=x6XCtf3UZKEC&oi=fnd&pg=PT7&dq=Plasma+Processing+of+Materials:+Scientific+Opportunities+and+Technological+Challenges+(1991)&ots=34b9GlKR9f&sig=UhTyOBG9wOB48TDu4qDsX0FfgRQ
  43. C. Kim, M. Kim, S. Kim, M. Kang, M. S. Choi, and H.-U. Kim, “Plasma and Gas-based Semiconductor Technologies for 2D Materials with Computational Simulation & Electronic Applications,” Advanced Electronic Materials, p. 2300835, 2024.
  44. Y. Crid and N. W. Cheung, “Semiconductor processing with plasma implantation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 79, no. 1–4, pp. 655–658, 1993.
  45. D. J. Economou, “Pulsed plasma etching for semiconductor manufacturing,” Journal of Physics D: Applied Physics, vol. 47, no. 30, p. 303001, 2014.
  46. J. Han, “Review of major directions in non-equilibrium atmospheric plasma treatments in medical, biological, and bioengineering applications,” Plasma Medicine, vol. 3, no. 3, 2013, Accessed: May 06, 2024. [Online]. Available: https://www.dl.begellhouse.com/journals/5a5b4a3d419387fb,4458a44f0f42e276,0ab1e353651c47b3.html
  47. N. V. M. Milhan, W. Chiappim, A. da G. Sampaio, M. R. da C. Vegian, R. S. Pessoa, and C. Y. Koga-Ito, “Applications of plasma-activated water in dentistry: A review,” International Journal of Molecular Sciences, vol. 23, no. 8, p. 4131, 2022.
  48. R. O. Kolomiiets, “Cold plasma generator for medical use,” Plasma Medicine, vol. 7, no. 1, 2017, Accessed: May 06, 2024. [Online]. Available: https://www.dl.begellhouse.com/journals/5a5b4a3d419387fb,0372ac1f554f3106,05ef562c204e755d.html
  49. X. Dai, K. Bazaka, E. W. Thompson, and K. Ostrikov, “Cold atmospheric plasma: a promising controller of cancer cell states,” Cancers, vol. 12, no. 11, p. 3360, 2020.
  50. T. von Woedtke, S. Emmert, H.-R. Metelmann, S. Rupf, and K.-D. Weltmann, “Perspectives on cold atmospheric plasma (CAP) applications in medicine,” Physics of Plasmas, vol. 27, no. 7, 2020, Accessed: May 06, 2024. [Online]. Available: https://pubs.aip.org/aip/pop/article/27/7/070601/263334
  51. T. Von Woedtke, M. Laroussi, and M. Gherardi, “Foundations of plasmas for medical applications,” Plasma Sources Science and Technology, vol. 31, no. 5, p. 054002, 2022.
  52. R. O. Kolomiets, T. M. Nikitchuk, D. С. Morozov, and O. V. Hrek, “Application of cold atmospheric plasma for the sterilization of objects of complex form,” 2018, Accessed: May 06, 2024. [Online]. Available: http://eztuir.ztu.edu.ua/handle/123456789/7375
  53. F. Tan, Y. Wang, S. Zhang, R. Shui, and J. Chen, “Plasma dermatology: skin therapy using cold atmospheric plasma,” Frontiers in Oncology, vol. 12, p. 918484, 2022.
  54. K. Ishikawa et al., “Generation and measurement of low-temperature plasma for cancer therapy: A historical review,” Free Radical Research, vol. 57, no. 3, pp. 239–270, 2023.
  55. C. Y. Koga-Ito et al., “Cold Atmospheric Plasma as a Therapeutic Tool in Medicine and Dentistry,” Plasma Chem Plasma Process, Aug. 2023, doi: 10.1007/s11090-023-10380-5.
  56. G. Lister, J. Lawler, W. Lapatovich, and V. Godyak, “The physics of discharge lamps,” Rev. Mod. Phys., vol. 76, no. 2, pp. 541–598, Jun. 2004, doi: 10.1103/RevModPhys.76.541.
  57. A. G. Jack and Q. H. F. Vrehen, “Progress in fluorescent lamps.,” Philips Tech. Rev., vol. 42, no. 10, pp. 342–351, 1986.
  58. A. Piel, Plasma Physics. in Graduate Texts in Physics. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-63427-2.
  59. O. K. Olajiga, E. C. Ani, Z. Q. Sikhakane, and T. M. Olatunde, “A comprehensive review of energy-efficient lighting technologies and trends,” Engineering Science & Technology Journal, vol. 5, no. 3, pp. 1097–1111, 2024.
  60. S. Singh, S. Kumar, S. K. Meena, and S. K. Saini, Introduction to plasma based propulsion system: Hall thrusters. IntechOpen, 2021. Accessed: May 06, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=J7daEAAAQBAJ&oi=fnd&pg=PA49&dq=S.+Singh+et+al.,+%E2%80%9CIntroduction+to+Plasma+Based+Propulsion+System:+Hall+Thrusters,%E2%80%9D+in+Propulsion+-+New+Perspectives+and+Applications,+IntechOpen,+2021.+doi:+10.5772/intechopen.96916.&ots=EA1y6RJp5p&sig=DZdf8iQLs_XeuePQWDctOBuR7Dw
  61. M. I. Boulos, M. Auweter-Kurtz, P. L. Fauchais, and E. Pfender, “Plasma in the Aerospace Industry,” in Handbook of Thermal Plasmas, M. I. Boulos, P. L. Fauchais, and E. Pfender, Eds., Cham: Springer International Publishing, 2023, pp. 1509–1580. doi: 10.1007/978-3-030-84936-8_32.
  62. J. Poggie, T. McLaughlin, and S. Leonov, “Plasma aerodynamics: current status and future directions,” Aerospace Lab, no. 10, 2015, Accessed: May 07, 2024. [Online]. Available: https://hal.science/hal-01265704/
  63. M. Li, Z. Wang, R. Xu, X. Zhang, Z. Chen, and Q. Wang, “Advances in plasma-assisted ignition and combustion for combustors of aerospace engines,” Aerospace Science and Technology, vol. 117, p. 106952, 2021.
  64. I. M. Blankson, “Aerospace Applications of Non-Equilibrium Plasma,” presented at the AIAA Aviation 2016, Jun. 2016. Accessed: May 07, 2024. [Online]. Available: https://ntrs.nasa.gov/citations/20170002538
  65. B. Navarro Rodriguez, “Plasma pre-treatment for adhesive bonding of aerospace composite components,” PhD Thesis, Brunel University London, 2016. Accessed: May 07, 2024. [Online]. Available: https://bura.brunel.ac.uk/handle/2438/14669
  66. O. F. Nwabor, H. Onyeaka, T. Miri, K. Obileke, C. Anumudu, and A. Hart, “A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods,” Food Eng Rev, vol. 14, no. 4, pp. 535–554, Dec. 2022, doi: 10.1007/s12393-022-09316-0.
  67. D. Mehta and S. K. Yadav, “Recent Advances in Cold Plasma Technology for Food Processing,” Food Eng Rev, vol. 14, no. 4, pp. 555–578, Dec. 2022, doi: 10.1007/s12393-022-09317-z.
  68. C. J. Hernández-Torres et al., “Recent trends and technological development in plasma as an emerging and promising technology for food biosystems,” Saudi Journal of Biological Sciences, vol. 29, no. 4, pp. 1957–1980, 2022.
  69. E. Özdemir, P. Başaran, S. Kartal, and T. Akan, “Cold plasma application to fresh green leafy vegetables: Impact on microbiology and product quality,” Comprehensive Reviews in Food Science and Food Safety, vol. 22, no. 6, pp. 4484–4515, 2023.
  70. S. Kumar, S. Pipliya, P. P. Srivastav, and B. Srivastava, “Exploring the Role of Various Feed Gases in Cold Plasma Technology: A Comprehensive Review,” Food and Bioprocess Technology, pp. 1–41, 2023.
  71. M. Nikzadfar et al., “Application of Cold Plasma Technology on the Postharvest Preservation of In-Packaged Fresh Fruit and Vegetables: Recent Challenges and Development,” Food Bioprocess Technol, Apr. 2024, doi: 10.1007/s11947-024-03380-6.
  72. H. Winter, R. Wagner, J. Ehlbeck, T. Urich, and U. Schnabel, “Deep Impact: Shifts of Native Cultivable Microbial Communities on Fresh Lettuce after Treatment with Plasma-Treated Water,” Foods, vol. 13, no. 2, p. 282, 2024.
  73. A. Shelar et al., “Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production,” RSC advances, vol. 12, no. 17, pp. 10467–10488, 2022.
  74. D. Manoharan, A. Rajan, J. Stephen, and M. Radhakrishnan, “Evaluating the influence of cold plasma bubbling on protein structure and allergenicity in sesame milk,” Allergologia et Immunopathologia, vol. 51, no. SP1, pp. 1–13, 2023.
  75. N. S. Kumar et al., “Recent advances in Cold Plasma Technology for modifications of proteins: A comprehensive review,” Journal of Agriculture and Food Research, p. 101177, 2024.
  76. Reema, R. R. Khanikar, H. Bailung, and K. Sankaranarayanan, “Review of the cold atmospheric plasma technology application in food, disinfection, and textiles: A way forward for achieving circular economy,” Frontiers in Physics, vol. 10, p. 942952, 2022.
  77. E. El-Sayed and A. G. Hassabo, “Recent advances in the application of plasma in textile finishing (A Review),” Journal of Textiles, Coloration and Polymer Science, vol. 18, no. 1, pp. 33–43, 2021.
  78. D. Hamdy, H. Othman, and A. G. Hassabo, “A recent uses of plasma in the textile printing,” Journal of Textiles, Coloration and Polymer Science, vol. 19, no. 1, pp. 1–10, 2022.
  79. A. Zille, F. R. Oliveira, and A. P. Souto, “Plasma Treatment in Textile Industry: Plasma Treatment in Textile Industry,” Plasma Process. Polym., vol. 12, no. 2, pp. 98–131, Feb. 2015, doi: 10.1002/ppap.201400052.
  80. E. Gogolides, M. Vlachopoulou, K. Tsougeni, N. Vourdas, and A. Tserepi, “Micro and nano structuring and texturing of polymers using plasma processes: potential manufacturing applications,” International Journal of Nanomanufacturing, vol. 6, no. 1–4, pp. 152–163, 2010.
  81. F. Palumbo, C. Lo Porto, and P. Favia, “Plasma nano-texturing of polymers for wettability control: Why, what and how,” Coatings, vol. 9, no. 10, p. 640, 2019.
  82. A. Skarmoutsou, C. A. Charitidis, A. K. Gnanappa, A. Tserepi, and E. Gogolides, “Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces,” Nanotechnology, vol. 23, no. 50, p. 505711, 2012.
  83. Y. Wu, M. Kuroda, H. Sugimura, Y. Inoue, and O. Takai, “Nanotextures fabricated by microwave plasma CVD: application to ultra water-repellent surface,” Surface and Coatings Technology, vol. 174, pp. 867–871, 2003.
  84. M. K. Jean-Noëla, K. T. Arthurb, and B. Jean-Marcc, “LIBS technology and its application: overview of the different research areas,” Journal of Environmental Science and Public Health, vol. 4, no. 3, pp. 134–149, 2020.
  85. R. S. Harmon, C. J. Lawley, J. Watts, C. L. Harraden, A. M. Somers, and R. R. Hark, “Laser-induced breakdown spectroscopy—An emerging analytical tool for mineral exploration,” Minerals, vol. 9, no. 12, p. 718, 2019.
  86. R. S. Harmon et al., “Laser-induced breakdown spectroscopy–An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Applied geochemistry, vol. 21, no. 5, pp. 730–747, 2006.
  87. F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-Induced Breakdown Spectroscopy,” Anal. Chem., vol. 85, no. 2, pp. 640–669, Jan. 2013, doi: 10.1021/ac303220r.
  88. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community,” Applied spectroscopy, vol. 64, no. 12, pp. 335A-366A, 2010.
  89. V. N. Rai and S. N. Thakur, “Physics of plasma in laser-induced breakdown spectroscopy,” Laser-induced breakdown spectroscopy, pp. 83–111, 2007.
  90. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl Spectrosc, vol. 66, no. 4, pp. 347–419, Apr. 2012, doi: 10.1366/11-06574.
  91. A. Limbeck et al., “Methodology and applications of elemental mapping by laser induced breakdown spectroscopy,” Analytica chimica acta, vol. 1147, pp. 72–98, 2021.
  92. A. J. Effenberger Jr and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors, vol. 10, no. 5, pp. 4907–4925, 2010.
  93. A. Yusuf et al., “Hazardous and emerging contaminants removal from water by plasma-based treatment: A review of recent advances,” Chemical Engineering Journal Advances, vol. 14, p. 100443, 2023.
  94. K. Urashima, “Review of Plasma Technologies for Contribution of Environmental Purification,” IEEE Open Journal of Nanotechnology, vol. 3, pp. 159–165, 2022.
  95. J. E. Foster, “Plasma-based water purification: Challenges and prospects for the future,” Physics of Plasmas, vol. 24, no. 5, 2017, Accessed: May 06, 2024. [Online]. Available: https://pubs.aip.org/aip/pop/article/24/5/055501/991350
  96. N. Takeuchi and K. Yasuoka, “Review of plasma-based water treatment technologies for the decomposition of persistent organic compounds,” Japanese Journal of Applied Physics, vol. 60, no. SA, p. SA0801, 2020.
  97. P. Gururani et al., “Cold plasma technology: advanced and sustainable approach for wastewater treatment,” Environmental Science and Pollution Research, pp. 1–21, 2021.
  98. U. M. Ekanayake et al., “Utilization of plasma in water desalination and purification,” Desalination, vol. 500, p. 114903, 2021.
  99. J. Foster, B. S. Sommers, S. N. Gucker, I. M. Blankson, and G. Adamovsky, “Perspectives on the interaction of plasmas with liquid water for water purification,” IEEE Transactions on Plasma Science, vol. 40, no. 5, pp. 1311–1323, 2012.
  100. K. Urashima and J.-S. Chang, “Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 5, pp. 602–614, 2000.
  101. K. Shimizu, Y. Kurokawa, and M. Blajan, “Basic study of indoor air quality improvement by atmospheric plasma,” IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1823–1830, 2015.
  102. S. Ya-bing and L. Min, “Application of low pressure plasma technology in the field of environmental protection,” Plasma Science and Technology, vol. 2, no. 2, p. 187, 2000.
  103. P. J. Asilevi, P. Boakye, S. Oduro-Kwarteng, B. Fei-Baffoe, and Y. A. Sokama-Neuyam, “Indoor air quality improvement and purification by atmospheric pressure Non-Thermal Plasma (NTP),” Scientific Reports, vol. 11, no. 1, p. 22830, 2021.
  104. M. Bahri and F. Haghighat, “Plasma‐ B ased Indoor Air Cleaning Technologies: The State of the Art‐ R eview,” CLEAN Soil Air Water, vol. 42, no. 12, pp. 1667–1680, Dec. 2014, doi: 10.1002/clen.201300296.
  105. J. Heberlein and A. B. Murphy, “Thermal plasma waste treatment,” Journal of Physics D: Applied Physics, vol. 41, no. 5, p. 053001, 2008.
  106. E. Sanjaya and A. Abbas, “Plasma gasification as an alternative energy-from-waste (EFW) technology for the circular economy: an environmental review,” Resources, Conservation and Recycling, vol. 189, p. 106730, 2023.
  107. S. A. Unnisa and M. Hassanpour, “Plasma technology and waste management,” Resource Recycling Waste Management, vol. 1, pp. 1–3, 2017.
  108. V. Sikarwar, “Waste utilization via thermal plasma,” PhD Thesis, Ghent University, 2023. Accessed: May 08, 2024. [Online]. Available: https://biblio.ugent.be/publication/01H21MH89J69ZF1Q4CT08FZKW0
  109. F. Fabry, C. Rehmet, V. Rohani, and L. Fulcheri, “Waste Gasification by Thermal Plasma: A Review,” Waste Biomass Valor, vol. 4, no. 3, pp. 421–439, Sep. 2013, doi: 10.1007/s12649-013-9201-7.
  110. E. Figueroa and V. Fuentes, “Generation of electricity and waste management by using plasma,” in Journal of Physics: Conference Series, IOP Publishing, 2018, p. 012065. Accessed: May 08, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1043/1/012065/meta
  111. S. Elaissi and N. A. Alsaif, “Modeling and performance analysis of municipal solid waste treatment in plasma torch reactor,” Symmetry, vol. 15, no. 3, p. 692, 2023.
  112. H. D. Stryczewska, M. A. Stępień, and O. Boiko, “Plasma and Superconductivity for the Sustainable Development of Energy and the Environment,” Energies, vol. 15, no. 11, p. 4092, 2022.
  113. P. M. Bellan, Fundamentals of plasma physics. Cambridge university press, 2008. Accessed: May 08, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=v2dER3SUrtsC&oi=fnd&pg=PA1&dq=Fundamentals+of+Plasma+Physics+Paperback+%E2%80%93+31+July+2008+by+Paul+M.+Bellan&ots=5iL1Xei_OD&sig=ngMWC10LvtJYKzyQlUloO07VSp0
  114. R. Betti, “A milestone in fusion research is reached,” Nature Reviews Physics, vol. 5, no. 1, pp. 6–8, 2023.
  115. J. Seo et al., “Avoiding fusion plasma tearing instability with deep reinforcement learning,” Nature, vol. 626, no. 8000, pp. 746–751, 2024.
  116. A. A. Zamri, M. Y. Ong, S. Nomanbhay, and P. L. Show, “Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: A review,” Environmental Research, vol. 197, p. 111204, 2021.
  117. A. Kothari, “Plasma Technology in Textile: A Step towards the Green Environment,” Contemporary Social Sciences, vol. 29, 2019, Accessed: May 06, 2024. [Online]. Available: https://repositori.unud.ac.id/protected/storage/upload/repositori/abcf2f0f9446e2ebce2ea04c8ed9074e.pdf#page=34
  118. R. Shishoo, Plasma technologies for textiles. Elsevier, 2007. Accessed: May 06, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=LI-kAgAAQBAJ&oi=fnd&pg=PP1&dq=R.+Shishoo,+Plasma+technologies+for+textiles.+Elsevier,+2007.+Accessed:+Mar.+18,+2024.+%5BOnline%5D.+Available:+https://books.google.com/books%3Fhl%3Den%26lr%3D%26id%3DLI-kAgAAQBAJ%26oi%3Dfnd%26pg%3DPP1%26dq%3DShishoo,%2BR.,%2BPlasma%2Btechnologies%2Bfor%2Btextiles.%2BElsevier,%2B2007.%26ots%3DK28j6ZBW2P%26sig%3DAMTqBhNQ9tZqrPvtj1ONsETw3i0&ots=K28oZ1DY1K&sig=m5MRwPi7aeJJYoYQ5ydkZ66od60
  119. R. Shishoo, “Plasma Treatment—Industrial Applications and Its Impact on the C&L Industry,” Journal of Coated Fabrics, vol. 26, no. 1, pp. 26–35, Jul. 1996, doi: 10.1177/152808379602600104.
  120. H. Guo et al., “Review on remediation of organic-contaminated soil by discharge plasma: Plasma types, impact factors, plasma-assisted catalysis, and indexes for remediation,” Chemical Engineering Journal, vol. 436, p. 135239, 2022.
  121. C. A. Aggelopoulos, “Recent advances of cold plasma technology for water and soil remediation: A critical review,” Chemical Engineering Journal, vol. 428, p. 131657, 2022.
  122. Mamta, R. J. Rao, and K. A. Wani, “Status of organochlorine and organophosphorus pesticides in wetlands and its impact on aquatic organisms,” Environmental Claims Journal, vol. 31, no. 1, pp. 44–78, 2019.
  123. D. Gimžauskaitė et al., “Remediation of organochlorine pesticides contaminated soil using thermal plasma,” Energetika, vol. 65, no. 2–3, 2019, Accessed: May 08, 2024. [Online]. Available: https://lmaleidykla.lt/ojs/index.php/energetika/article/view/4106
  124. M. Morita, “Scanning Electron Microscope Energy Dispersive X-Ray Spectrometry,” in Compendium of Surface and Interface Analysis, The Surface Science Society Of Japa, Ed., Singapore: Springer Singapore, 2018, pp. 557–561. doi: 10.1007/978-981-10-6156-1_90.
  125. S. Bhattacharya, H. J. Kansara, J. Lodge, C. A. Diaz, and C. L. Lewis, “Plasma treatment process for accelerating the disintegration of a biodegradable mulch film in soil and compost,” Frontiers in Materials, vol. 10, p. 1232577, 2023.
  126. E. M. Konchekov et al., “Advancements in plasma agriculture: A review of recent studies,” International journal of molecular sciences, vol. 24, no. 20, p. 15093, 2023.
  127. Y. K. Danileyko et al., “Portable Technology for Obtaining Plasma-Activated Water to Stimulate the Growth of Spruce and Strawberry Plants,” Horticulturae, vol. 9, no. 10, p. 1142, 2023.
  128. R. Thirumdas, A. Kothakota, K. Kiran, R. Pandiselvam, and V. Prakash, “Exploitation of cold plasma technology in agriculture,” Advances in Research, vol. 12, no. 4, pp. 1–7, 2017.
  129. K. Sayahi, A. H. Sari, A. Hamidi, B. Nowruzi, and F. Hassani, “Application of cold argon plasma on germination, root length, and decontamination of soybean cultivars,” BMC Plant Biol, vol. 24, no. 1, p. 59, Jan. 2024, doi: 10.1186/s12870-024-04730-4.
  130. N. Ahmed, K. S. Siow, M. M. R. Wee, and A. Patra, “A study to examine the ageing behaviour of cold plasma-treated agricultural seeds,” Scientific reports, vol. 13, no. 1, p. 1675, 2023.
  131. W. Rao et al., “The Application of Cold Plasma Technology in Low-Moisture Foods,” Food Eng Rev, vol. 15, no. 1, pp. 86–112, Mar. 2023, doi: 10.1007/s12393-022-09329-9.
  132. P. Attri, K. Ishikawa, T. Okumura, K. Koga, and M. Shiratani, “Plasma agriculture from laboratory to farm: A review,” Processes, vol. 8, no. 8, p. 1002, 2020.
  133. M. Šimek and T. Homola, “Plasma-assisted agriculture: history, presence, and prospects—a review,” The European Physical Journal D, vol. 75, pp. 1–31, 2021.
  134. R. A. Priatama, A. N. Pervitasari, S. Park, S. J. Park, and Y. K. Lee, “Current advancements in the molecular mechanism of plasma treatment for seed germination and plant growth,” International Journal of Molecular Sciences, vol. 23, no. 9, p. 4609, 2022.
  135. S. Toyokuni, Y. Ikehara, F. Kikkawa, and M. Hori, Plasma medical science. Academic Press, 2018. Accessed: May 08, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=AE9jDwAAQBAJ&oi=fnd&pg=PP1&dq=M.+Hori,+Creation+of+Plasma+Medical+Science,+2014.+%5BOnline%5D.+Avail-+able:+http://www.mext.go.jp/a_menu/shinkou/hojyo/chukan-jigohy+ouka/1352858.htm&ots=rQthFXida_&sig=O8a6eVPu8kBlMBcfh9W4L4Hp4_0
  136. M. Laroussi, “Low-temperature plasma jet for biomedical applications: a review,” IEEE transactions on plasma science, vol. 43, no. 3, pp. 703–712, 2015.
  137. R. E. Sladek, E. Stoffels, R. Walraven, P. J. Tielbeek, and R. A. Koolhoven, “Plasma treatment of dental cavities: a feasibility study,” IEEE Transactions on plasma science, vol. 32, no. 4, pp. 1540–1543, 2004.
  138. R. Bingham and R. Trines, “Introduction to Plasma Accelerators: the Basics,” CERN Yellow Reports, vol. 1, pp. 67–67, Feb. 2016, doi: 10.5170/CERN-2016-001.67.
  139. N. Yasoob A., N. Kh. Abdalameer, and A. Q. Mohammed, “Plasma Production and Applications: A Review,” Int. J. Nanosci., vol. 21, no. 06, p. 2230003, Dec. 2022, doi: 10.1142/S0219581X22300036.