Vol. 23 No. 3 (2024): Mapana Journal of Sciences
Research Articles

Improved Photocatalytic and Bacterial Growth Inhibition Properties Realized for PbS/SnO2-rGO Nanocomposite

AR Balu
A Veeriya Vandayar Memorial Sri Pushpam College, Poondi

Published 2024-11-09

Keywords

  • Nanocomposite,
  • Reduced graphene oxide,
  • Heterojunction,
  • Bacterial resistance,
  • Zone of inhibition

Abstract

PbS/SnO2 (PS) and rGO-PbS/SnO2 (rPS) nanocomposites (NCs) were synthesized through one-pot green synthesis and chemical precipitation methods. In this paper, a comparison of the synthesized composites' photodegradation and bacterial growth inhibition properties has been conducted. For both composites, XRD analyses show the presence of tetragonal-structured SnO2 and cubic-structured PbS peaks. rGO blending increases PS crystallite size from 29 nm to 34 nm. rPS NC shows uniformly packed grains with well-defined boundaries. Absorption peaks of PS redshifts with rGO inclusion. The decreased band gap for rPS might be due to the synergistic effect of sulfur/oxygen vacancies and significant interaction between rGO and PbS/SnO2 NC. The rPS catalyst demonstrated a maximum degradation efficiency of 93% against rhodamine B (RhB) dye. Antibacterial activity of PbS/SnO2 improves with rGO inclusion. PS and rPS NCs are more resistant to gram-positive bacteria than gram-negative bacteria.

References

  1. Suganya, M., Prabha, D., Anitha, S., Balamurugan, S., Nagarethinam, V. S., & Balu, A. R. (2017). Thermal behavior, magnetic and antimicrobial properties of PbS–CdO nanocomposite synthesized by a simple soft chemical route. Journal of Materials Science: Materials in Electronics, 28, 12348-12355.
  2. Suganya, M., Balu, A. R., Prabha, D., Anitha, S., & Balamurugan, S. (2018). PbS–SnO2 nanocomposite with enhanced magnetic, photocatalytic and antifungal properties. Journal of Materials Science: Materials in Electronics, 29, 1065-1074.
  3. Chitra Devi, S., Sowmiya Devi, B., Balu, A. R., Devendran, K., Suganya, M., & Sriramraj, M. (2023). Improved Haacke's quality factor, third order nonlinear susceptibility and specific capacitance realized for PbS thin films through La3+ doping. Ceramics International, 49, 33793-33803.
  4. Bouct, C., Laufer, D., Mahler, B., Nadal, B., Heuclin, H., Pedetti, S., Patriarche, G., & Dubertret, B. (2014). Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chemistry of Materials, 26, 3002-3008.
  5. Ferrari, S., Pampillo, L. G., & Saccone, F. D. (2016). Magnetic properties and environment sites in Fe doped SnO2 nanoparticles. Materials Chemistry and Physics, 177, 206-212.
  6. Vaezi, M. R., & Sadrnezhaad, S. K. (2007). Gas sensing behavior of nanostructured sensors based on tin oxide synthesized with different methods. Materials Science and Engineering: B, 140, 73-80.
  7. Cui, X., Xu, W., Xie, Z., & Wang, Y. (2015). Hierarchical SnO2@ SnS2 counter electrodes for remarkable high-efficiency dye-sensitized solar cells. Electrochimica Acta, 180, 125-132.
  8. Zheng, L. R., Zheng, Y. H., Chen, C. Q., Zhan, Y. Y., Lin, X. Y., Zhen, Q., Wei, K. M., & Zhu, J. F. (2009). Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity. Inorganic Chemistry, 48, 1819 - 1825.
  9. Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemistry Society Reviews, 41, 666-686.
  10. Zhu, C., Guo, S., Fang, Y., & Dong, S. (2010). Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4, 2429-2437.
  11. Bose, D., & Chatterjee, S. (2016). Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Applied Nanoscience, 6, 895-901.
  12. Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., & Chhowalla, M. (2009). Insulator to semimetal transition in graphene oxide. The Journal of Physical Chemistry C, 113, 15768-15771.
  13. Yousaf, S., Zulfiqar, S., Din, M.I., Agboola, P. O., Aly Aboud, M. F., Warsi, M. F., Shakir, I. (2021). Solar light irradiated photocatalytic activity of ZnO-NiO/rGO nanocatalyst, Journal of Materials Research and Technology, 12, 999–1009 .
  14. Zhao, Y., Li, Le., Zuo, Y., He, G., Chen, Q., Meng, Q., Chen, H. (2022). Reduced grapheme oxide supported ZnO/CdS heterojunction enhances photocatalytic removal efficiency of hexavalent chromium from aqueous solution, Chemosphere, 286, 131738.
  15. Malik, A. R., Sharif, S., Shaheen, F., Khalid, M., Iqbal, Y., Faisal, A., Aziz, M. H., Atif, M., Ahmad, S., Fakhar-e-Alam, M., Hossain, N., Ahmad, H., Botmart, T. (2022). Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. Journal of Saudi Chemical Society, 26, 101438.
  16. Chen Lin, Y., Tsai, D. C., Chang, Z. C., Shieu, F. S. (2018). Ultrasonic chemical synthesis of CdS-reduced grapheme nanocomposites with an enhanced visible light photoactivity. Applied Surface Science, 440, 1227–1234 .
  17. Rahimi, K., Zafarkish, H., Yazdani, A. (2018). Reduced grapheme oxide can activate the sunlight induced photocatalytic effect of NiO nanowires. Materials and Design, 144, 214–221.
  18. El-Hout, S. I., El-Sheikh, S. M., Gaber, A., Shawky, A. (2020). Highly efficient sunlight-driven photocatalytic degradation of malachite green dye over reduced grapheme oxide supported CuS nanoparticles. Journal of Alloys and Compounds, 849, 156573.
  19. Jyothilakshmi, V. P., Bhabhina, N. M., Dharsana, M. V., Sindhu, S. (2020). Wet chemical synthesis of lead sulphide nanoparticles and its application as light harvester in photovoltaice cell. Materials Today Proceedings, 33, 2125–2129.
  20. Nallandran, R., Selvan, G., Balu, A. R. (2019). Photocatalytic performance of SnO2 coupled with CdO nanoparticles against MY and RhB dyes. Journal of Electronic Materials, 48, 3676–3685.
  21. Fu, X., Zhang, Y., Cao, P., Ma, H., Liu, P., Peng, J., Li, J., & Zhai, M. (2016). Radiation synthesis of CdS/reduced graphene oxide nanocomposites for visible-light-driven photocatalytic degradation of organic contaminant. Radiation Physics and Chemistry, 123, 79-86.
  22. Jiang, L., Yao, M., Liu, B., Li, Q., Liu, R., Lv, H., Lv, S., Gong, C., Zou, B., Cui, T., & Liu, B. (2012). Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. The Journal of Physical Chemistry C, 116, 11741-11745.
  23. Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4, 380-386.
  24. Khan, Z., Chetia, T. R., Vardhaman, A. K., Barpuzary, D., Sastri, C. V., & Qureshi, M. (2012). Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS - metal oxide hybrids in presence of graphene oxide. RSC Advances, 2, 12122-12128.
  25. Peng, T., Li, K., Zhen, P., Zhiang, Q., & Zhang, X. (2012). Enhanced photocatalytic hydrogen production over graphene oxide–cadmium sulfide nanocomposite under visible light irradiation. The Journal of Physical Chemistry C, 116, 22720-22726.
  26. Suganya, M., Balu, A. R., Sowmiya Devi, B., Chitra Devi, S., Karthika, M., Kayathiri, C., Sriramraj, M., Devendran, K., Adityan, S. (2024). GO and rGO blended CdS nanoparticles for congo red dye deactivation, energy storage and growth inhibition aginst Bacillus subtilis and Escherichia coli bacterial strains: A comparative analysis. Journal of Cluster Science, 35, 827–843.
  27. Suganya, M., Balu, A. R., Prabha, D., Anitha, S., & Balamurugan, S. (2018). Enhanced photocatalytic and antifungal properties of PbS nanopowder doped with Ag+ ions. Journal of Materials Science: Materials in Electronics, 29, 4312-4319.
  28. Prabha, D., Ilangovan, S., Balamurugan, S., Suganya, M., Anitha, S., Nagarethinam, V. S., & Balu, A. R. (2017). Spectroscopic, magnetic and antibacterial properties of Sr-doped SnS2nanopowders. Optik, 142, 301-310.
  29. Zhang, H., He, Q., Wei, F., Ten, Y., Jiang ,Y., Zheng, G., Ding, G., & Jiao, Z. (2014). Ultrathin SnO nanosheets as anode materials for rechargeable lithium-ion batteries. Materials Letters, 120, 200-203.
  30. Das, M. R., Sarma, R.K., Saika, R., Kale, V. S., Shelke, M. V., & Sengupta, P. (2011). Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 83, 16-22.
  31. Manjula, N., & Balu, A. R. (2017). Double doping (Mn+ Cl) effects on the structural, morphological, photoluminescence, optoelectronic properties and antibacterial activity of CdO thin films. Optik, 130, 464-472.
  32. Sowribabu, K., Ramachandra reddy, A., Sujitha, Ch., & Venugopal Reddy, K. (2013). Optimization of UV emission intensity of ZnO nanoparticles by changing the excitation wavelength. Materials Letters, 99, 97-100.
  33. Ravishankar, S., Balu, A. R., Usharani, K., Balamurugan, S., Prabha, D., & Nagarethinam, V. S. (2017). Optical and magnetic properties of PbS thin films doped with Fe2+ ions. Optik ,134, 121-127.
  34. Gu, F., Wang, S. F., Lu, M. K., Zhou, G. J., Xu, D., & Yuan, D. R. (2004). Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol−Gel Method. The Journal of Physical Chemitry B, 108, 8119-8123.
  35. Prabha, D., Ilangovan, S., Suganya, M., Anitha, S., Balamurugan, S., & Balu, A. R. (2017). TG-DSC analysis, magnetic and antifungal properties of Al-doped SnS2 nanopowders. Journal of Materials Science: Materials in Electronics, 28, 15556-15564.
  36. Sivaraman, T., Nagarethinam, V. S., & Balu, A. R. (2016). Properties of CdS films doped with magnesium and fluorine. Surface Engineering, 32, 596-600.
  37. Irshad, A., Farooq, F., Warsi, M. F., Shaheen, N., Elnaggar, A.Y., Hussein, E. E., El-Bahy, Z. M., & Shahid M. (2022). Ag-doped FeCo2O4 nanoparticles and their composite with flat 2D reduced graphene oxide sheets for photocatalytic degradation of colored and colorless compounds. Flatchem, 31, 100325.
  38. Kumar, S., Kaushik, R.D., & Purohit, L.P. (2023). RGO supported ZnO/SnO2 Z-scheme heterojunctions with enriched ROS production towards enhanced photocatalytic mineralization of phenolic compounds and antibiotics at low temperature. Journal of Colloid and Interface Science, 632, 196-215.
  39. Xu, D., Cheng, B., Cao, S., & Yu, J. (2015). Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Applied Catalyis B: Environmental, 164, 380-388.
  40. Yousaf, S., Zulfiqar, S., Din, M. I., Agboola, P. O., Aly Aboud, M. F., Warsi, M.F., & Shakir, I. (2021). Solar light irradiated photocatalytic activity of ZnO–NiO/rGOnanocatalyst. Journal of Material Research and Technology, 12, 999-1009.
  41. Feng, C., Deng, Y., Tang, L., Zeng, G., Wang, J., Yu, J., Liu, Y., Peng, B., Feng, H., & Wang, J. (2018). Core-shell Ag2CrO4/N-GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities. Applied Catalysis B: Environmental, 239, 525-536.
  42. Ahmad, N., Sultana, S., Sabir, S., & Khan, M. Z. (2020). Exploring the visible light driven photocatalysis by reduced graphene oxide supported Ppy/CdS nanocomposites for the degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemstry, 386,112129.
  43. Diakowska, D., Lewandowski, A., Kopee, W., Diakowski, W., & Chrzanowska, T. (2007). Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Journal of Hepato-Gastroenterology, 78, 1701-1704.
  44. Ceril Jeoffrey, A., Jothi Ramalingam, S., Murugaiah, K., & Balu, A. R. (2023). Highly photoactive rGO-MnO2/CuO nanocomposite photocatalyst for the removal of metanil yellow dye and bacterial resistance against Pseudomonas Aeruginosa. Chemical Physics Impact, 6,100246.
  45. Dat, N. M., Thinh, D. B., Huong, L. M., Tinh, N. T., Linh, N. T. T., Hai, N. D., Vict, N. D., Dat, N. T., Phong, M. T., & Hieu, N. H. (2022). Facile synthesis and antibacterial activity of silver nanoparticles-modified graphene oxide hybrid material: the assessment, utilization, and anti-virus potentiality. Mater ials Today Chemistry, 23,100738.
  46. Gu, D., Cheng, X., Zhei, X., Sun, S., Li, Z., Liu, T., Dong, L., & Yin, Y. (2016). Efficient synthesis of silver-reduced graphene oxide composites with prolonged antibacterial effects. Ceramics International, 42, 9769-9778.
  47. Reddy, N. J., Nagoor Vali, D., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C, 34, 115-122.
  48. Ganesh, M., Lee, S. G., Jayaprakash, J., Mohankumar, M., & Jang, H. T. (2019). HydnocarpusalpinaWt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity. Biocatalysis and Agricultural Biotechnology, 19,101129.