Photocatalytic and antibacterial properties of carbonaceous materials coupled NiO nanocomposites
Published 2025-04-06
Keywords
- Reduced graphene oxide,
- XRD,
- precipitation,
- photodegradation,
- antibacterial
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
The photocatalytic and antibacterial characteristics of pure NiO (NO), GO, and rGO integrated NiO (GNO and rNO) nanoparticles have been compared in this work. Through the process of chemical precipitation, NO and GNO NPs were created. Through the use of Centella asiatica leaf extract to reduce graphene oxide to rGO, rNO NC was produced utilizing one-pot green synthesis technique. The cubic crystal structure of all the samples shows a clear preferential growth along the (2 0 0) direction. Graphene oxide and reduced graphene oxide blending have a detrimental effect on the crystalline quality of NO. Reduced band gaps for the GNO and rNO samples were observed resulting from charge delocalization from electronic interaction between NiOand GO/rGO. The degradation efficiencies of NO, GNO and rNO catalysts were 78, 83 and and 92 %,respectively against rhodamine B after 100 min of light irradiation. The antibacterial properties of NO, GNO, and rNO NPs are differentiated by their size and ability to generate reactive oxygen species. Due to decreased crystallite size more ROS are generated for rNO and hence enhanced antibacterial potency has been realized.
References
- N. Ajoudanian andA. Nezamzedeh-Ejhieh, “Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin,” Mater. Sci. Semicond. Proc, vol. 36,p.162,2015. https://doi.org/10.1016/j.mssp.2015.03.042.
- M.L. Hitchman and F. Tian, “Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol,” J. Electroanal. Chem, vol. 538, p.165, 2002.
- https://doi.org/10.1016/S0022-0728(02)01252-4.
- V.Vo, T.P.T. Thi, H.Y. Kim, and S.J. Kim, “Facile post-synthesis and photocatalytic activity of N-doped ZnO–SBA-15,” J. Phys. chem. Sol, vol. 75, p. 403, 2014.https://doi.org/10.1016/j.jpcs.2013.11.011.
- A.M. Fischbach, and T.C.Walsh, “Antibiotics for emerging pathogens,” Science,vol. 325,p. 1089, 2009.https://doi.org/10.1126/science.1176667.
- M.Vairavel, E. Devaraj, and R. Shanmugam, “An eco-friendly synthesis of Enterococcus sp.–mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells,” Environ. Sci. Poll, Res, vol. 3, p. 1, 2020. https://doi.org/10.1007/s11356-019-07511-x.
- A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, X. Zhang and L. John Kennedy, “Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies,” Surf. Interfaces,vol. 20, p. 100553, 2020. https://doi.org/10.1016/j.surfin.2020.100553.
- S.Anitha, S. Suganya, D. Prabha, S.Balamurugan and A.R. Balu, “Synthesis and characterization of NiO-CdO composite materials towards photoconductive and antibacterial applications,” Mater. Chem. Phys, vol. 211,p. 88, 2018.https://doi.org/10.1016/j.matchemphys.2018.01.048.
- M.Z. Iqbal and R.J.Kriek, “Silver/nickel oxide (Ag/NiO) nanocomposites produced via a citrate sol-gel route as electrocatalyst for the oxygen evolution reaction (OER) in alkaline medium,” Electrocatalysis, vol. 9, p. 279, 2018.https://doi.org/10.1007/s12678-018-0455-5.
- J.Gao, P. He, T.Yang, L.Zhou, X.Wang, S. Chen, H. Lei, H.Zhang, B. Jia and J. Liu, “Electrodeposited NiO/graphene oxide nanocomposite: An enhanced voltammetric sensing platform for highly sensitive detection of uric acid, dopamine and ascorbic acid,” J. Electroanal. Chem, vol. 852, p.113516, 2019.
- https://doi.org/10.1016/j.jelechem.2019.113516.
- F. Soofivand and M. Salavati-Niasari, “Step synthesis and photocatalytic activity of NiO/graphene nanocomposite under UV and visible light as an effective photocatalyst,” J. Photochem. Photobiol, A Chem, vol. 337,p. 44, 2017. https://doi.org/10.1016/j.jphotochem.2017.01.003.
- R.M.Obodo, H.E. Nsude, C.U. Eze, B.O.Okereke, S.C.Ezugwu, I. Ahmed, M. Maaza and F.I.Ezema, “Optimization of MnO2, NiO and MnO2@ NiO electrodes using graphene oxide for supercapacitor applications,” Curr. Res. Green Sustain. Chem,vol. 5, p. 100345, 2022.https://doi.org/10.1016/j.crgsc.2022.100345.
- K. Rahimi, A. Yazdani and M. Ahmadirad, “Graphene quantum dots enhance UV photoresponsivity and surface-related sensing speed of zinc oxide nanorod thin films,” Mater. Des, vol. 140,p. 222, 2018. https://doi.org/10.1016/j.matdes.2017.12.010.
- A. Bayat and E. Saievar-Iranizad, “Graphene quantum dots decorated rutile TiO2 nanoflowers for water splitting application,” J. Energy. Chem, vol. 27,p. 306, 2018.https://doi.org/10.1016/j.jechem.2017.09.036.
- K. Rahimi, H. Zafarkish and A. Yazdani, “Reduced graphene oxide can activate the sunlight-induced photocatalytic effect of NiO nanowires,” Mater. Design, vol. 144, p. 214.2018.https://doi.org/10.1016/j.matdes.2018.02.030.
- L. Zou, X. Wang, X. Xu and H. Wang, “Reduced graphene oxide wrapped CdS composites with enhanced photocatalytic,” Ceram. Int, vol. 42,p. 372, 2016. https://doi.org/10.1016/j.ceramint.2015.08.119.
- B. M. Garcia, A. Polovitsyn, M. Prato and I. Moreels, “Efficient charge transfer in solution-processed PbS quantum dot–reduced graphene oxide hybrid materials,” J. Mater. Chem. C, vol. 3, p. 7088.2015.https://doi.org/10.1039/C5TC01137J.
- D. Zhang, H. Chang, P. Li and R. Liu, “Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection,” Electron, vol. 27, p. 3723.2016. https://doi.org/10.1007/s10854-015-4214-6.
- T.A. Pham, B.C. Choi and Y.T. Jeong, ”Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets: preparation, characterization and optical properties,”Nanotechnol, vol. 21, p. 465503. 2010. https://doi.org/10.1088/0957-4484/21/46/465603.
- M. El-Kemary, N. Nagy and I. El-Mehasseb, “Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose,” Mater. Sci. Semicond. Proc, vol. 16,p. 1747, 2013. https://doi.org/10.1016/j.mssp.2013.05.018.
- K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De Gomes and M. Maaza, “Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials,” Ceram. Int, vol. 42, p. 8385,2016. https://doi.org/10.1016/j.ceramint.2016.02.054.
- S. Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad and D. Mohammadyani, “Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method,” Ultrasonic Sonochem, vol. 19, p. 841, 2012. https://doi.org/10.1016/j.ultsonch.2011.11.017.
- X.M. Ni, Y.F. Zhang, D.Y. Tian, H.G. Zheng and X.W. Wang, ”Synthesis and characterization of hierarchical NiO nanoflowers with porous structure,” J. Cryst. Growth, vol. 306,p. 418,2007. https://doi.org/10.1016/j.jcrysgro.2007.05.013.
- V. Biju and M. Abdul Khadar, “Fourier transform infrared spectroscopy study of nanostructured nickel oxide,”Spectrochim. Acta A Mol. Biomol. Spectroscopy,vol. 59,p. 121, 2003. https://doi.org/10.1016/S1386-1425(02)00120-8.
- M. Ben Amor, A. Boukhachem, A. Labidi, K. Boubaker and M. Amlouk, “Physical investigations on Cd doped NiO thin films along with ethanol sensing at relatively low temperature,” J. Alloys Compnd, vol. 693,p. 490, 2016. https://doi.org/10.1016/j.jallcom.2016.09.207.
- F.T. Thema, E. Manikandan, A. Gurib-Fakim and M. Maaza, “Single phase BunseniteNiO nanoparticles green synthesis by Agathosmabetulina natural extract,” J. Alloys Compnd. Vol. 657, p. 655, 2016.https://doi.org/10.1016/j.jallcom.2015.09.227.
- D. Graft, F. Molitor, E. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, “Spatially resolved Raman spectroscopy of single-and few-layer graphene,” Nano Lett, vol. 7, p. 238, 2007. https://doi.org/10.1021/nl061702a.
- R. Nallendran, G. Selvan and A.R. Balu, “CdO-Fe3O4 nanocomposite with enhanced magnetic and photocatalytic properties,” Mater. Sci. Poland, vol. 37,p. 100,2019. https://doi.org/10.2478/msp-2019-0012.
- J. Srivind, V.S. Nagarethinam, M. Suganya, S. Balamurugan, K. Usharani and A.R. Balu, “NiO coupled SnS2 nanoparticles with improved magnetic and photocatalytic performance against the degradation of organic dyes without N=N double bond,” Vacuum, vol. 163, p. 373, 2019. https://doi.org/10.1016/j.vacuum.2019.02.048.
- R. Nallendran, G. Selvan and A.R. Balu, “Photocatalytic performance of SnO2 Coupled CdO Nanoparticles Against MY and RhB Dyes,” J. Electron. Mater, vol. 48, p. 3676, 2019. https://doi.org/10.1007/s11664-019-07125-6.
- G. Williams and P.V. Kamat, “Graphene-Semiconductor nanocomposites: Excited-State interactions between ZnO nanoparticles and graphene oxide,” Langmuir, vol. 25, p. 13867, 2009.https://doi.org/10.1021/la900905h.
- J. Xiao,W. Lv, Z. Xie, Y. Tan, Y. Song and Q. Zheng, “Environmentally friendly reduced graphene oxide as a broad spectrum adsorbent for anionic and cationic dyes: via π-π interactions,” J. Mater. Chem, vol. 4, p. 12126,2016. https://doi.org/10.1039/C6TA04119A.
- D. Akyuz, “rGO-TiO2-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue,” Opt. Mater, vol. 116, p. 111090, 2021. https://doi.org/10.1016/j.optmat.2021.111090.
- X.S. Li, Q. Wang, Y.B. Zhao, W. Wu, J.F. Chen and H. Meng, “Green synthesis and photocatalytic performances for ZnO - reduced graphene oxide nanocomposites,” J. Coll. Interface Sci, vol. 411, p. 69,2013. https://doi.org/10.1016/j.jcis.2013.08.050.
- G. Cheng, F.F. Xu, J.Y. Xiong, F. Tian, J. Ding, F.J. Stadler and R. Chen, “Enhanced adsorption and photocatalysis capability of generally synthesized TiO2-Carbon materials hybrids,” Adv. Powder Technol, vol. 27, p. 1949, 2016. https://doi.org/10.1016/j.apt.2016.06.026.
- A. Irshad, F. Farooq, M.F. Warsi, N. Shaheen, A.Y. Elnaggar, E.E. Hussein, Z.M. El-Bahy and M. Shahid, “Ag-doped FeCo2O4 nanoparticles and their composite with flat 2D reduced graphene oxide sheets for photocatalytic degradation of colored and colorless compounds,”Flatchem,vol. 31, p. 100325.2022. https://doi.org/10.1016/j.flatc.2021.100325.
- S. Kumar, A.K. Ojha and B. Walkenfort, “Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation,” J. Photochem. Photobiol. B. Bio, vol. 159,p. 111, 2016. https://doi.org/10.1016/j.jphotobiol.2016.03.025.
- A. Allahbaksh, Z. Jarrahi, G. Farzi and A. Shavandi, “Three-dimensional nanoporous Cu-BTC/graphene oxide nanocomposites with engineered antibacterial properties synthesized via a one-pot solvosonication process,” Mater. Chem. Phys, vol. 277, p. 125502.2022. https://doi.org/10.1016/j.matchemphys.2021.125502.
- M. Karthika, A.R. Balu, G. Vinitha, Z. Delci, M. Suganya, S. Chitra Devi, K. Devendran and M. Sriramraj, “Electrochemical third order nonlinear optical and antibacterial properties of chitosan, a cationic polymer loaded CuS:Co nanoparticles,” Ceram. Int, vol. 49,p. 17806, 2023. https://doi.org/10.1016/j.ceramint.2023.02.146.
- M. Karthika, A.R. Balu, M. Suganya, S. Chitra Devi, M. Sriramraj, K. Devendran, G. Vinitha, Z. Delci and S. Balamurugan, “Chitosan a Cationic Polymer-Loaded CuS:Ni Nanoparticles Well Suited for Pseudocapacitors, Optical Switching and Spintronic Devices,” Nano, vol. 18, p. 2350014.2023. https://doi.org/10.1142/S1793292023500145.
- A. Ceril Jeoffrey, S. Jothi Ramalingam, K. Murugaiah and A.R. Balu, “Photocatalytic and antibacterial properties of one pot green synthesized rGO-ZnO/SnO nanocomposite using Alternanthera sessilis leaf extract,”Inorg. Chem. Commun, vol. 151, p.110585, 2023.https://doi.org/10.1016/j.inoche.2023.110585.
- A. Ceril Jeoffrey, S. Jothi Ramalingam, K. Murugaiah and A.R. Balu, “Highly photoactive rGO-MnO2/CuO nanocomposite photocatalyst for the removal of metanil yellow dye and bacterial resistance against Pseudomonas Aeruginosa,” Chem. Phys. Impact, vol. 6, p. 100246, 2023. https://doi.org/10.1016/j.chphi.2023.100246.