Vol. 24 No. 2 (2025): Mapana Journal of Sciences
Research Articles

Insight into Indole Derivatives by Experimental and Theoretical Methods

Vijayalaxmi Mallayya
Gulbarga University Kalaburagi
Srinath
Gulbarga University, Kalaburagi.

Published 2025-08-09

Keywords

  • Electric Dipole moment, HOMO-LUMO, Molecular Electrostatic Potential.

Abstract

       Solvent effect on fluorescence and absorption spectra of fluorescent Indole derivative viz, 5-chloro-3-phenyl-1H-indole-2-carbohydrazide (CPIC) has been studied in different solvents at room temperature. The shifts in the position, intensities and shapes of the absorption and fluorescence bands have been observed. The ground and excited state dipole moment of the fluorescent molecule have been calculated from the Solvatochromic shift method. The excited-state dipole moments were estimated from Lippert, Bakhshiev and Kawski–Chamma–Viallet equations by using the variation of the Stokes’ shift with the solvent dielectric constant and refractive index. The Reichardt‘s microscopic solvent polarity parameter has been used to calculate change in dipole moment. It was found that the excited-state dipole moments were higher than those of the ground-state dipole moment. The large value of dipole moment in the excited state is due to more polar nature. The HOMO-LUMO energy gap and MEP map estimated theoretically by using B3LYP/6-31+G (d, p) basis set of Gaussian 16 program.

References

  1. Xue-Hua Zhang, Yan Cui, Ryuzi Katoh, Nagatoshi Koumura and Kohjiro Hara J. Phys. Chem. C 2010, 114, 42, 18283–18290.
  2. B. S. Mathada, N. G. Yernale, J. N. Basha, J. Badiger, an insight into the advanced synthetic recipes to access ubiquitous indole heterocycles, Tetrahedron Letters, Volume 85, 2021, 153458, https://doi.org/10.1016/j.tetlet.2021.153458.
  3. N. G. Yernale, B. H. M. Mruthyunjayaswamy, Metal (II) complexes of ONO donor Schiff base ligand as a new class of bioactive compounds containing indole core: Synthesis and characterization, Int J Pharm Pharm Sci, Vol 8, Issue 1, 197-204 (2016).
  4. T. Hintz, K. K. Matthews, R. Di, Biomedical Research Institute, pp.246, 2015.
  5. C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry, John Wiley & Sons, 2011.
  6. M. Ravi, T. Soujanya, A. Samanta, T.P. Radhakrishnan, Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT, J. Chem. Soc., Faraday Trans. 91 (17) (1995) 2739–2742.
  7. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chemical reviews 94 (8) (1994) 2319–2358..
  8. P. Suppan, Excited-state dipole moments from absorption/fluorescence solvatochromic ratios, Chem. Phys. Lett. 94 (3) (1983) 272–275, https://doi. org/10.1016/0009-2614(83)87086-9.
  9. J.T. Edward, Molecular volumes and the Stokes-Einstein equation, J. Chem. Educ. 47 (4) (1970) 261, https://doi.org/10.1021/ed047p261
  10. N. Kumar, M. Paramasivam, J. Kumar, A. Gusain, P.K. Hota, Tuning of optical properties of p-phenyl ethenyl-E-furans: a solvatochromism and density functional theory, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206 (2019) 396–404, https://doi.org/10.1016/j.saa.2018.08.032.
  11. G. G. Shivraj, B. Shivaleela and S. M. Hanagodimath, Spectroscopic analysis of NMR, IR, Raman and UV-Visible, HOMO-LUMO, ESP and Mulliken charges of coumarin derivative by density functional theory, Journal of the Maharaja Sayajirao University of Baroda, 55, 1 (XIV) (2021) 213-229.
  12. G. G. Shivraj, B. Shivaleela and S. M. Hanagodimath, Comparative study of NMR, IR, Raman spectroscopy, HOMO-LUMO surfaces of benzofuran and coumarin derivative in vacuum and methanol, Journal f the Maharaja Sayajirao University of Baroda, 56, 2(I) (2022) 169-186.
  13. S.M. Hanagodimath, G.C.Chikkur, G.S. Gadaginamath, Environmental effects on the energy migration coefficient, the effective energy transfer and quenching distances in an organic liquid scintillator, Chem. Phys. 148 (2) (1990) 347–357, https://doi.org/10.1016/0301-0104(90)89030-T.
  14. S.M. Hanagodimath, G.S. Gadaginmath, G.C. Chikkur, ‘‘Role of Brownian diffusion and interaction distance on energy transfer and quenching in an organic liquid scintillator, Int. J. Radiat. Appl. Instrument. Part A. Appl. Radiat. Isotopes 41 (9) (1990) 817–821, https://doi.org/10.1016/0883-2889(90) 90058-O
  15. S.M. Hanagodimath, G.C. Chikkur, G.S. Gadaginmath, An unique method of determining the excitation energy migration coefficient in organic liquid scintillators, Pramana – J. Phys. 37 (2) (1991) 153–161, https://doi.org/ 10.1007/BF02875302.
  16. S.M. Hanagodimath, G.S. Gadaginamath, G. Chikikur, On the mechanism of excitation energy transfer involving long and short range interaction in dilute organic liquid scintillator systems, Acta Phys. Pol. A 81 (3) (1992) 361–368.
  17. R. Melavanki, T. Muttannavar, S. Vaijayanthimala, N. Patil, L. Naik, J. Kadadevarmath, Solvent effects on the dipole moments and photo physical properties of laser dye, Indian J. Pure Appl. Phys. 56 (2018) 749–754.
  18. V.R. Desai, S.M. Hunagund, M. Basanagouda, J.S. Kadadevarmath, J. Thipperudrappa, A.H. Sidarai, Spectroscopic studies on newly synthesized 5- (2-hydroxy-5-methoxy-phenyl)-2-phenyl-2H-pyridazin-3-one molecule, J. Mol. Liq. 225 (2017) 613–620, https://doi.org/10.1016/j.molliq.2016.11.080.
  19. V.R. Desai, S.M. Hunagund, M. Basanagouda, J.S. Kadadevarmath, A.H. Sidarai, Solvent effects on the electronic absorption and fluorescence spectra of HNP: estimation of ground and excited state dipole moments, J. Fluoresc. 26 (4) (2016) 1391–1400, https://doi.org/10.1007/s10895-016-1830-3.
  20. B. Siddlingeshwar, S.M. Hanagodimath, E.M. Kirilova, G.K. Kirilov, Photophysical characteristics of three novel benzanthrone derivatives: Experimental and theoretical estimation of dipole moments, J. Quant. Spectrosc. Radiat. Transfer 112 (3) (2011) 448–456, https://doi.org/10.1016/j. jqsrt.2010.09.00.
  21. G.B. Mathapati, P.K. Ingalgondi, O. Patil, S. Basavaraj, S.M. Hanagodimath, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule, Int. J. Scient. Res. Phys. Appl. Sci. 5 (2018) 1061–1065.
  22. G.B. Mathapati, O. Patil, S. Basavaraj, S. Gounalli, S.M. Hanagodimat, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule by Solvatochromic shift method and Gaussian software, Int. J. sci. Res. Phys. Appl. Sci. 7 (2019) 38–43, https://doi.org/10.26438/ijsrpas/ v7i2.3843.
  23. Kulkarni MV, Kulkarni GM, Lin CH, Sun CM (2006) Recent advances in coumarins and 1-azacoumarins as versatile biody namic agents. Curr Med Chem 13:2795–2818.
  24. Patil O, Ingalagondi PK, Hanagodimath SM (2021) Estimation of dipole moments of new coumarin dye by experimental and theoretical methods. Macromol Symp 400:2100015. https:// doi. org/10.1002/masy.202100015.
  25. E. Lipert, Dipole moment and electronic structure of excited molecules, Z. Naturforsch 10 (1955) 541–546.
  26. N. Mataga, Y. Kaifu, M. Koizumi, The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule, BCSJ 28(9) (1955)690https://doi.org/10.1246/bcsj.28.690.
  27. N.G. Bakshiev, Solvent dielectric relaxation effects, Optical Spectroscopy” 13 (1962) 507–530.
  28. L. Bilot, A. Kawski, Zur theorie des einflusses von Lösungsmitteln auf die elektronenspektren der moleküle, Zeitschrift für Naturforschung A 17 (7) (1962) 621–627.
  29. L.Bilot,A.Kawski,Der Einfluß des Lösungsmittels auf die Elektronenspektren lumineszierender Moleküle, Z. Naturforsch 18A (1963) 10–15.
  30. M. Pourtabrizi, N. Shahtahmassebi, A. Kompany, S. Sharifi, Dipole moment of excited and ground state of Auramine O doped nano-droplet, Opt. Quant. Electron. 49 (9) (2017) 291, https://doi.org/10.1007/s11082-017-1124-2.
  31. C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry, John Wiley & Sons, 2011.
  32. M. Ravi, T. Soujanya, A. Samanta, T.P. Radhakrishnan, Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT, J. Chem. Soc., Faraday Trans. 91 (17) (1995) 2739–2742.
  33. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chemical reviews 94 (8) (1994) 2319–2358..
  34. P. Suppan, Excited-state dipole moments from absorption/fluorescence solvatochromic ratios, Chem. Phys. Lett. 94 (3) (1983) 272–275, https://doi. org/10.1016/0009-2614(83)87086-9.
  35. J.T. Edward, Molecular volumes and the Stokes-Einstein equation, J. Chem. Educ. 47 (4) (1970) 261, https://doi.org/10.1021/ed047p261.
  36. N. Kumar, M. Paramasivam, J. Kumar, A. Gusain, P.K. Hota, Tuning of optical properties of p-phenyl ethenyl-E-furans: a solvatochromism and density functional theory, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206 (2019) 396–404, https://doi.org/10.1016/j.saa.2018.08.032.
  37. V.R. Desai, S.M. Hunagund, M. Basanagouda, J.S. Kadadevarmath, J. Thipperudrappa, A.H. Sidarai, Spectroscopic studies on newly synthesized 5- (2-hydroxy-5-methoxy-phenyl)-2-phenyl-2H-pyridazin-3-one molecule, J. Mol. Liq. 225 (2017) 613–620, https://doi.org/10.1016/j.molliq.2016.11.080.
  38. R. Kumari, A. Varghese, L. George, Synthesis, crystal structure and photophysical properties of (E)-4-(4-(2-hydroxybenzylideneamino) benzyl) oxazolidin-2-one, J. Lumin. 179 (2016) 518–526.
  39. S.N. Patil, F.M. Sanningannavar, B.S. Navati, N.R. Patil, R.A. Kusanur, R.M. Melavanki, Spectroscopic properties and estimation of ground and excited state dipole moments of biologically active fluorescent molecule from absorption and emission spectra 4 (1) (2014) 11.
  40. S. Sharifi, S.G. Salavatovna, A. Azarpour, F. Rakhshanizadeh, G. Zohuri, M.R. Sharifmoghadam, Optical properties of methyl orange-doped droplet and photodynamic therapy of Staphylococcus aureus, J. Fluoresc. 29 (6) (2019) 1331–1341, https://doi.org/10.1007/s10895-019-02459-0.
  41. V.R. Desai, S.M. Hunagund, M. Basanagouda, J.S. Kadadevarmath, A.H. Sidarai, Solvent effects on the electronic absorption and fluorescence spectra of HNP: estimation of ground and excited state dipole moments, J. Fluoresc. 26 (4) (2016) 1391–1400, https://doi.org/10.1007/s10895-016-1830-3.
  42. G.H. Pujar, M.N. Wari, B. Steffi, H. Varsha, B. Kavita, Y.C Panicker, C. Santhosh, P. Ajeetkumar, S.R. Inamdar, A combined experimental and computational investigation of solvatochromism of nonpolar laser dyes: Evaluation of ground and singlet excited-state dipole moments, J. Mol. Liq. 244 (2017) 453–463, https://doi.org/10.1016/j.molliq.2017.08.078.
  43. B. Siddlingeshwar, S.M. Hanagodimath, E.M. Kirilova, G.K. Kirilov, Photophysical characteristics of three novel benzanthrone derivatives: Experimental and theoretical estimation of dipole moments, J. Quant. Spectrosc. Radiat. Transfer 112 (3) (2011) 448–456, https://doi.org/10.1016/j. jqsrt.2010.09.00.
  44. G.B. Mathapati, P.K. Ingalgondi, O. Patil, S. Basavaraj, S.M. Hanagodimath, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule, Int. J. Scient. Res. Phys. Appl. Sci. 5 (2018) 1061–1065.
  45. G.B. Mathapati,O. Patil, S. Basavaraj, S. Gounalli, S.M.Hanagodimat, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule by Solvatochromic shift method and Gaussian software, Int.J.sci.Res.Phys Appl.Sci.7(2019) 38–43, https: //doi.org /10.26438 /ijsrpas / v7i2. 3843.
  46. Y.G. Sidir, The solvatochromism, electronic structure, electric dipole moments and DFT calculations of benzoic acid liquid crystals, Liq. Cryst. 47 (10) (2020) 1435–1451, https://doi.org/10.1080/02678292.2020.1733685.
  47. N. Pandey, N. Tewari, S. Pant, M.S. Mehata, Solvatochromism and estimation of ground and excited state dipole moments of 6-aminoquinoline, Spectrochim.